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Monthly runoff prediction using modified CEEMD-based

weighted integrated model

Xinqing Yan, Yuan Chang, Yang Yang and Xuemei Liu
ABSTRACT
Due to the nonlinear characteristics of runoff data and the poor performance of the single prediction

model, a weighted integrated modified complementary ensemble empirical mode decomposition

(MCEEMD)-based model was proposed to predict the monthly runoff of three hydrological stations in

the lower reaches of the Yellow River. In this model, particle swarm optimization (PSO) was used to

optimize the parameters of support vector regression (SVR), back propagation neural network (BP),

long short-term memory neural network (LSTM) that constitute it. The weight coefficients and

frequency terms decomposed by MCEEMD were used to obtain the final prediction results. Results

indicated that this model performs better than other models, with the Nash–Sutcliffe efficiency (NSE)

reaching above 0.92, qualification rate (QR) reaching above 75% and all error indicators being

minimal. In addition, considering the influence of extreme weather and climate anomalies, the

integrated model combined the atmospheric circulation anomalies factors and the results can still be

improved. It can be verified that this weighted integrated model can be used for the stable and

accurate predication of medium- and long-term runoff.

Key words | integrated model, modified complementary ensemble empirical mode decomposition,

monthly runoff prediction, particle swarm optimization, weight coefficient
HIGHLIGHTS

• Decomposition of runoff into smooth sequences using MCEEMD reduces the accumulation of

errors associated with the CEEMD.

• A weighted integrated method was used to develop predictive models based on the MCEEMD

decomposition.

• In view of the influence of extreme weather and abnormal climate on runoff prediction accuracy,

the atmospheric circulation anomaly factors were used as the input data of the model to predict.
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GRAPHICAL ABSTRACT
INTRODUCTION
Runoff is an important condition of regional industrial and

agricultural water supply, and also a restricting factor of

regional socio-economic development. The measurement,

calculation, and forecast of runoff are important tasks

of water conservancy construction. For example, they are

of great significance for the operation, planning, and dis-

patching of hydropower stations to predict monthly runoff

accurately (Huang et al. a, b). Runoff prediction

has received a lot of attention in recent years.

The traditional model usually uses mathematical

statistics. Typically, Tesfaye et al. () used a periodic

autoregressive moving average model to produce a realistic

simulation for monthly runoff data of the Fraser River in

British Columbia. Ouyang et al. () used the dynamic

time warping distance method to perform a similarity

search of floods at Shaliguilanke station in the Tarim River

basin. With the development of data science, there are

more and more studies on runoff prediction based on

machine learning and neural networks. Typically, Cui

(a, b) proposed to improve the Elman neural net-

work prediction model and the hidden layer back

propagation neural network (BP) prediction model. Lu

and Zhou () screened input factors of a forecast model

by using the mutual information method. In the BP neural

network model, mean square error and mutual information

are used as objective functions to measure the correlation

between factors, optimize the final prediction factors, and

apply the prediction factors to the runoff prediction of
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Biliu River in flood season; the model can identify multiple

complex correlations between forecast factors and forecast

quantity. Xiang et al. () used long short-term memory

neural network (LSTM) and the seq2seq structure to esti-

mate hourly rainfall-runoff.

However, the generation process of runoff tends to be

uncertain, highly nonlinear, and time varying, especially

when extreme weather appears, thus the monthly stream-

flow series contains different frequency components

(Huang et al. a, b). Similarly, the nonlinear

character of runoff contradicts the data requirements of

many models. Moreover, the single prediction model (i.e.,

a model using only one algorithm) has limitations, such as

the over-fitting phenomenon and local optimality in neural

network, and there is no uniform standard in kernel func-

tion selection and parameter calibration in the support

vector machine method (Han et al. ).

In order to solve the above defects, this study has devel-

oped a weighted integrated model based on the modified

complementary ensemble empirical mode decomposition

(MCEEMD) to predict monthly runoff. In this study, the

particle swarm optimization optimize support vector

regression (PSO-SVR), particle swarm optimization opti-

mize back propagation neural network (PSO-BP), and

particle swarm optimization optimize long short-term

memory neural network (PSO-LSTM) methods with excel-

lent runoff prediction performance were selected as the

compositions of the integrated model, and the runoff data
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decomposed by MCEEMD were used as the training data.

Then, the weights of each model’s frequency terms were cal-

culated according to the errors of the single algorithms, and

the runoff prediction results of the weighted integrated

model were finally obtained by adding each single model’s

weighted frequency terms. In addition, the optimal factors

of atmospheric circulation anomaly factors were selected

as the additional item of training data of the integrated

model to predict runoff, which improved the prediction

accuracy and stability of the model in extreme weather

periods. Compared with other models, the weighted inte-

grated model had a better prediction performance,

especially during periods of extreme weather and weather

anomalies, which can provide a reference for regional

water resources allocation and regional water resources

optimization. It also provided a new idea for the develop-

ment of hydrological prediction.
METHODS

Modified complementary ensemble empirical mode

decomposition (MCEEMD)

Huang et al. () of the National Aeronautics and Space

Administration proposed a method of data decomposition

called empirical mode decomposition (EMD), which essen-

tially identifies all vibration modes contained in a signal

through characteristic time scales. The basic principle of

EMD is to decompose the complex sequence of input into

a finite number of intrinsic mode functions (IMF) from

high to low frequencies and a residual term. The decom-

posed IMF contains local characteristic signals of the

original signal at different time scales, and reduces the

mutual interference between different trend information.

IMF must meet with two characteristics:

1. the number of extremum points and zero crossings must

be the same or at most one different throughout the data

segment;

2. in any case, the mean value of the envelope defined by

the local maxima and that of the local minima is zero.

However, EMD will lead to the frequent occurrence of

mode aliasing in the decomposition process, which will
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.274/787311/jwc2020274.pdf
undermine the physical significance of IMF (Han et al.

). Huang & Wu () proposed the ensemble empirical

mode decomposition (EEMD) to solve the defects of EMD.

Although EEMD effectively solves the modal aliasing

phenomenon of EMD by adding white noise, it is affected

by residual noise in signal reconstruction. Yeh et al. ()

improved the EEMD method and proposed the complemen-

tary ensemble empirical mode decomposition (CEEMD),

which not only solved the problem of mode aliasing that

EMD is prone to, but also avoided the influence of residual

noise of EEMD in signal reconstruction. In recent years,

CEEMD has been applied to many models for runoff predic-

tion (Zhang et al. ).

However, the components obtained after the decompo-

sition of CEEMD are too much, especially the nonlinear

and non-stationary features of IMF1, which will bring a

large number of calculations and error accumulation to

the prediction model. MCEEMD reconstructed the IMFs

decomposed by CEEMD through the fluctuation frequency

and amplitude to obtain the high frequency (HF) term,

medium frequency (MF) term, low frequency (LF) term,

and residual term (Res) to address the above deficiencies.

The process of decomposition for MCEEMD is as follows:

1. Adding a random sequence of positive and negative white

noise ni(t) (i.e., the original signal plus the white noise

plus the original signal minus the white noise) with the

same amplitude and phase angle difference of π to the

original signal x(t). Adding a new noise with the same

amplitude every time to get a new signal.

mþ
i (t) ¼ x(t)þ ni(t)

m�
i (t) ¼ x(t)� ni(t)

�
(1)

2. EMD is used to decompose mþ
i (t) and m�

i (t) to obtain

two sets of signals composed of 2N IMFs components

Cj(t) and a residual term ri(t).

mþ
i (t) ¼

PN
j¼1

Ciþ
j (t)þ riþ(t)

m�
i (t) ¼

PN
j¼1

Ci�
j (t)þ ri�(t)

8>>>><
>>>>:

(2)

3. Repeating step 1 and step 2, adding different positive and

negative white noise sequences each time to get M (i.e.,
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number of times white noise was added) group of IMF

components and residual terms.

4. The IMF Cj(t) and residual rj(t) of the original signal are

averaged by the decomposition results.

Cj(t) ¼ 1
2M

XM
i¼1

[Ciþ
j (t)þ Ci�

j (t)]

rj(t) ¼ 1
2M

XM
i¼1

[riþj (t)þ ri�j (t)]

8>>>><
>>>>:

(3)
Figure 1 | The structure of back propagation neural network (BP).
5. According to the fluctuation frequency and amplitude of

IMF, the high frequency term H(t), medium frequency

term M(t), and low frequency term L(t) are obtained.

H(t) ¼ P2
j¼1

Cj(t)

M(t) ¼ P4
j¼3

Cj(t)

L(t) ¼ P7
j¼5

Cj(t)

8>>>>>>>>><
>>>>>>>>>:

(4)

6. The original signal decomposition is expressed as fol-

lows:

x(t) ¼ H(t)þM(t)þ L(t)þ r(t) (5)

Support vector regression (SVR)

Support vector regression (SVR) is an application of SVM in

regression prediction proposed by Vapnik (). SVR maps

the original data to a new feature space through nonlinear

mapping. In the feature’s new space, a linear function can

be found that constructs the mathematical relationship

between the input and output values, and predicts the

value through this function. SVR has high accuracy and

strong generalization ability, so it is widely used in runoff

prediction (Huang et al. a, b; Chu et al. ). The

calculation formula of SVR is as follows:

f(x) ¼
Xl

i¼1

(αi � αi�)K(xi, x)þ b (6)
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where l is the number of the data set; αi and αi� are lagrange

multiplier; K(xi, x) is the kernel function; b is the deviation

between the true value and the predicted value.

The solution of function f(x) can be transformed into an

optimized process:

min
1
2
wTw

� �
þ C

Pn
i¼1

(ξi þ ξi�)

s:t:
yi �wφ(xi)� b � εþ ξi
wTφ(xi)þ b� yi � εþ ξi�

ξi � 0, ξi� � 0, i ¼ 1, 2, . . . , n

8>>>><
>>>>:

(7)

wherew is the weight vector; ξi and ξi� are relaxation factor;

C is the penalty coefficient, an appropriate C can make the

model have a better generalization ability; φ(xi) is the map-

ping from the input space to the feature space; ε is the

constant deviation; n is the sample size. The optimized pro-

cess is subjected to the constraints under it.
Back propagation neural network (BP)

BP is a multi-layer feed-forward network trained by error

back propagation. BP uses the gradient search technology

to minimize the mean square error between the actual

output value and the expected output value of the network.

BP is usually combined with other algorithms for runoff pre-

diction (Lu & Zhou ). The structure of BP is shown in

Figure 1.

The input signal X through the hidden layer node affects

the output node, each nerve input includes input vector and
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the desired output vector. If the deviation vector is not as

expected, the weight W and threshold value are adjusted

in the opposite direction to reduce the error along the gradi-

ent direction. After repeated transmission, reduce the error

to expectations and get the optimal solution Y.
Long short-term memory network (LSTM)

LSTM is an improved recurrent neural network (RNN). LSTM

uses gates to control the memory process, making up for the

loss caused by RNN gradient explosion and gradient disap-

pearance to a large extent, and solving the problem that

RNN cannot handle long-distance dependence. LSTM adds

input gate, forgetting gate, output gate, and internal memory

unit on the basis of RNN (Sepp & Jürgen ). The unit struc-

ture diagram of the LSTM model is shown in Figure 2.

The calculation formulas of forgetting door ft, input

door it and output door ot are as follows:

ft ¼ σ(Wfxt þUiht�1 þ bf) (8)

it ¼ σ(Wixt þUiht�1 þ bi�1) (9)

~Ct ¼ tanh (WC × [ht�1, xt]þ bC) (10)

Ct ¼ ft × Ct�1 þ it × ~Ct (11)

ot ¼ σ(Woxt þUoht�1 þ bo) (12)

ht ¼ ot × tanh (Ct) (13)

where xt is the input layer; ht is the hidden layer; W and U

are weight parameters; b is the bias; Ct is the cell state. The
Figure 2 | The unit structure diagram of long short-term memory neural network (LSTM).

://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.274/787311/jwc2020274.pdf
input gate it is obtained through the activation function after

the transformation between input layer xt and output ht�1 of

the previous hidden layer; the values of weight parameters

W and U, bias b depend on the training results of the

model; the result of the input gate is a vector, which is

responsible for calculating the current input state based on

the last output and this input; the calculation process of for-

getting gate ft and output gate ot is similar to that of input

gate it. Such a control process enables the LSTM model to

quickly and accurately learn the long-term dependence

between sequences, which has great advantages in the pro-

cessing of time series runoff data.
Particle swarm optimization (PSO)

Eberhart and Kennedy () proposed the PSO algorithm,

which can simulate the foraging behavior of birds, to realize

intelligent problem solving. PSO regards the optimal sol-

ution of the problem as a particle, and obtains a set of

random solutions after initialization, then iterates and

finds the optimal solution by updating the velocity and pos-

ition of the particle. The updated equations for the particle

are as follows:

Vtþ1
i,j ¼ ωVt

i,j þ c1rt1,i,j(ŷ
t
i � xti,j)þ c2rt2,i,j(ŷ

t
i,j � xti,j) (14)

xtþ1
i,j ¼ xti,j þ Vtþ1

i,j (15)

where Vt
i,j is the velocity of particle i in the j dimension at the

t iteration; Vt
i,j is the position of i; ω is the weight of inertia;

c1 and c2 are learning factors; yti,j is the individual extremum

point at the t iteration of the particle swarm; ŷti is the

global extremum; rt1,i,j and rt2,i,j are random numbers between

0 and 1.

The optimization process of PSO is as follows:

1. Initialize the parameters of the particle swarm, including

population size, number of iterations, learning factor, and

range of speed and location.

2. Choose the fitness function of PSO.

3. Create a particle randomly, including the various par-

ameters of the algorithm.

4. Get the local and global optimal positions of the particle

according to the fitness function.
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5. Update the particle speed and position according to

Equations (14) and (15). Update the local and global opti-

mal values according to the new fitness function.

6. After reaching the maximum number of iterations, the

optimal particle is taken as the parameter of the

algorithm.

Weighted integrated model

The integrated model can efficiently utilize the effective

information of each single prediction model (Jing &

Zhang ). The basic idea of the weighted integrated

model used in this study is to calculate the weights of fre-

quency terms decomposed by MCEEMD from different

models based on the predicted values of frequency terms,

and get the weighted value as the final value of each fre-

quency term according to the weight, and the weighted

values of each frequency are added to obtain the final

runoff prediction results. The calculation equations are as

follows:

R ¼
Xn
i¼1

αiHiþ
Xn
i¼1

βiMiþ
Xn
i¼1

γiLi þ
Xn
i¼1

δiResi (16)

αi ¼
1

jeH,ijPn
i¼1

1
jeH,ij

, βi ¼
1

jeM,ijPn
i¼1

1
jeM,ij

, γi ¼
1

jeL,ijPn
i¼1

1
jeL,ij

, δi

¼
1

jeR,ijPn
i¼1

1
jeR,ij

(17)

where R is the the weighted integrated model obtained for the

runoff; Hi is the result for the high frequency terms of each

model; Mi is the result for the medium frequency terms of

each model; Li is the result for the low frequency terms of

each model; Resi is the result for the residual terms of each

model; αi, βi, γi, δi are the weights of different frequency

terms for each single model; n is the number of the single

model; eH,i, eM,i, eL,i, and eR,i are the errors between the pre-

dicted and true values of the frequency terms for different

single models. The average relative error of the predicted

values was used as the error in this study.
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In order to improve the accuracy of runoff prediction,

PSO optimize SVR based on MCEEMD (MCEEMD-PSO-

SVR), PSO optimize BP based on MCEEMD (MCEEMD-

PSO-BP), and PSO optimize LSTM based on MCEEMD

(MCEEMD-PSO-LSTM) were used to develop a weighted

integrated model in this study. The weighted integrated

model is a process of ‘Decomposition – Reconstruction –

Optimization – Prediction – Weighted Integration – Recon-

struction’. Figure 3 shows the framework of the model,

including:
1. Decompose the original runoff data R into three fre-

quency terms (HF, MF, LF) and one residual item Res

by using MCEEMD.

2. Use each frequency term as the training data of each

single model.

3. Optimize the different single models by using PSO.

4. Calculate the weights (αi, βi, γi, δi) of each frequency term

from different single models by using the average relative

error.



7 X. Yan et al. | Weighted integrated runoff model Journal of Water and Climate Change | in press | 2020

Corrected Proof

Downloaded from http
by guest
on 06 March 2021
5. Develop the weighted integrated model based on the

weights and reconstruct the predicted results of the fre-

quency terms to obtain the final prediction result R.
Model evaluation

The Nash–Sutcliffe efficiency (NSE) and the qualified rate

(QR) were used to evaluate the performance of the weighted

integrated model (Nash & Sutcliffe ). According to the

Standard for hydrological information and hydrological

forecasting (), a qualified sample is one in which the

error between the predicted and observed value does not

exceed 20%, and a QR greater than 70% is considered to

be a reliable model. Maximum absolute error (MaxAE),

minimum absolute error (MinAE), mean absolute error

(MAE), mean absolute percentage error (MAPE), and root

mean square error (RMSE) were selected as the comparison

indicators of the integrated model and other single predic-

tion models (Willmott & Matsuura ; Myttenaere et al.

). The calculation formulas are as follows:

NSE ¼ 1�

Pn
i¼1

[yc(i)� y0(i)]
2

Pn
i¼1

[y0(i)� �y0]
2

(18)

QR ¼ m
n
× 100% (19)

MaxAE ¼ MAX(jyc(i)� yo(i)j) (20)

MinAE ¼ MIN(jyc(i)� yo(i)j) (21)

MAE ¼ 1
m

Xn
i¼1

jyc(i)� yo(i)j (22)

MAPE ¼
Xn
i¼1

yo(i)� yc(i)
yo(i)

����
���� × 100%

n
(23)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

[yo(i)� yc(i)]
2

vuut (24)

where yc(i) is the predicted value; y0(i) is the measured

value; �y0 is the mean value of the measured value; n is the

total number of predicted samples; and m is the total

number of qualified predicted samples.
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STUDY AREA AND DATA

Lijin hydrological station is located in Dongying, Shandong

province, 104 km from the mouth of the Yellow River,

which is located in the lowest reaches of the Yellow River.

Gaocun hydrological station is an important control station

for the Yellow River flowing into Shandong province, with a

section 579.1 km from the estuary and a catchment area of

734,146 km2. Aishan hydrological station is located in Liao-

cheng, Shandong province. The above three hydrological

stations are responsible for providing water conditions for

flood control and water resources dispatching in the lower

reaches of the Yellow River, studying and exploring the

changing rules of hydrological factors, and collecting hydro-

logical data for river regulation and water and sand resource

utilization in the lower reaches of the Yellow River. The data

from these stations are complete and consistent with the law

of hydrology. Figure 4 shows the location of these hydrologi-

cal stations.

This study used monthly runoff data for a total of 780

months from January 1950 to December 2014. The training

set used runoff data from January 1950 to December 2001, a

total of 624 months. The validation set runoff data from Jan-

uary 2002 to December 2014, a total of 156 months, was

used to verify results of the model. Table 1 shows the charac-

teristics of monthly runoff data of the three hydrological

stations. Coefficient of variation (CV) is a relative index to

measure the dispersion degree of runoff data, skewness rep-

resents the degree of asymmetry in the distribution of runoff

data, and kurtosis represents the peak shape characteristic

of probability density distribution curve. Table 1 shows the

following:

1. The CVs of each hydrological station in the lower reaches

of the Yellow River are 0.86–1.07, which indicates that

the change of monthly runoff is dramatic and the distri-

bution is uneven in the year.

2. All skewness are greater than 0, and all are positive devi-

ations, indicating that a small number of monthly runoff

data are large.

3. All kurtosis are greater than the kurtosis of normal distri-

bution and uniform distribution, indicating that the

monthly runoff data differ greatly from the mean value

and have many extreme values.



Figure 4 | The location of Lijin hydrological station, Gaocun hydrological station, and Aishan hydrological station.

Table 1 | Characteristics of monthly runoff data of three hydrological stations

Station Average monthly runoff CV Skewness Kurtosis

Lijin 25.65 (108m3) 1.07 2.05 5.11

Gaocun 29.01 (108m3) 0.86 2.10 5.02
8 3
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The variation process of monthly runoff is shown in

Figure 5. It can be seen from Table 1 and Figure 5 that the

monthly runoff had a large amplitude of variation and a

weak periodicity, presenting a nonlinear and non-stationary

characteristic state.

Aishan 27.93 (10 m ) 0.96 2.14 5.51
RESULTS

The original series decomposed by MCEEMD

MCEEMD was used to decompose the monthly runoff data

from January 1950 to December 2014. The decomposed
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.274/787311/jwc2020274.pdf
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results included three frequency terms and one residual

term. The components were reduced to four after the recon-

struction, and the characteristics and objective laws of the

original time series data were still retained. In addition,

the high frequency term obtained by combining IMF1 and

IMF2 eliminated the nonlinear characteristics of IMF1.

The monthly runoff data after decomposition by

MCEEMD are shown in Figure 6. As can be seen from

Figure 6, although the reconstructed high frequency term

retains some features of IMF1 and IMF2, it has reduced

the nonlinear feature, and the features of the intermediate

frequency term and low frequency term are similar to

those of the IMF. It can be seen that HF has the highest fre-

quency, the largest fluctuation, and the shortest wavelength.

The frequency gradually decreases in MF and LF, the fluctu-

ations gradually weaken, the wavelength gradually increases

and the periodicity becomes stronger. The residual term rep-

resents the trend of monthly runoff at stations over time

from 1950 to 2014. As can be seen in Figure 6, the monthly



Figure 5 | The observed monthly runoff from January 1950 to December 2014 in (a) Lijin hydrological station, (b) Gaocun hydrological station, (c) Aishan hydrological station.
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runoff shows a declining trend year to year, with a low

decline rate during the early months and a higher decline

rate in the later months.

Data processing

Since the monthly runoff time series data are unstable and

nonlinear, when these data are directly input to the algor-

ithm, the model training process will generate large

numerical fluctuations. Therefore, the monthly runoff data

need to be normalized before the training process. The nor-

malized formula is as follows:

y0i ¼
yi �min (yi)

max (yi)�min (yi)
(25)
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.274/787311/jwc2020274.pdf
After prediction, the data can be re-scaled following the

contrary procedure of Equation (25).
Parameter selection by PSO

Proper parameter selection can directly determine the per-

formance of the training process. The parameters of the

predictive algorithm are usually selected manually. How-

ever, manual selection is too subjective. In addition, the

numerous parameters of the algorithm can make a lot of

unnecessary work. Therefore, algorithms in this study were

optimized using PSO with global optimization capabilities.

After optimization, the radial basis function (RBF)

kernel function of SVR was selected as the kernel function,

the optimal penalty factor C of SVR was 8.3598, and the



Figure 6 | The frequency terms of monthly runoff after MCEEMD decomposition from January 1950 to December 2014 in (a) Lijin hydrological station, (b) Gaocun hydrological station, (c)

Aishan hydrological station.

Table 2 | The weight coefficients of frequency terms for each single model

Stations Terms
MCEEMD-
PSO-SVR

MCEEMD-
PSO-BP

MCEEMD-
PSO-LSTM

Lijin HF 0.32 0.26 0.43
MF 0.36 0.30 0.33
LF 0.31 0.32 0.37
Res 0.29 0.34 0.37
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parameter g of the optimal kernel function was 0.031413 for

SVR. The input layer of BP was set to 7 and the output layer

to 1. The activation function of LSTM was selected as recti-

fied linear unit (ReLU), the units of the LSTM were selected

as 20, the loss function of LSTM was selected as MAE, and

the optimizer of LSTM was selected as adaptive moment

estimation (Adam).

The activation function ReLU of LSTM is a non-satu-

rated activation function. Compared with other activation

functions, ReLU has the advantages of fast convergence

and fast calculation speed (Ramachandran et al. ). The

optimizer Adam, which is computationally efficient and

has little memory requirements, combines first moment esti-

mation (the mean of the gradients) and second moment

estimation (the uncentralized variance of the gradients)

(Kingma & Ba ).

Gaocun HF 0.36 0.24 0.40

MF 0.40 0.22 0.38
LF 0.34 0.28 0.37
Res 0.30 0.35 0.35

Aishan HF 0.23 0.22 0.55
MF 0.35 0.29 0.36
LF 0.29 0.35 0.36
Res 0.33 0.36 0.31
Predicted results

According to Equation (17), the weights of each frequency

term for different single models in the weighted integrated

model were obtained by calculating average relative errors
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.274/787311/jwc2020274.pdf
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of the predicted results for the same frequency term of differ-

ent models, and the results are shown in Table 2. The greater

the weight, the greater the contribution of the single model

to the integrated model.

The predicted values of the weighted integrated model

were calculated according to the weights obtained in

Table 2. Table 3 indicates the prediction performance of



Table 3 | The performance of the weighted integrated model on each hydrological station

Indicators

Training set Verification set

Stations NSE QR/% NSE QR/%

Lijin 0.98 87 0.93 78

Gaocun 0.99 86 0.95 79

Aishan 0.98 85 0.92 75
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the weighted integrated model on each station in training set

and verification set. It can be seen that the NSEs of each

station during the training period and the verification

period were all greater than 0.5, indicating that the predicted

results were reliable. NSE was greater than 0.98 and QR was

greater than 85% in each station during the training period.

NSE was greater than 0.92 and QR was greater than 75% in

each station during the verification period. The predicted

results accord with the standard of hydrological forecast.

Since the data in this study were divided into training set

and verification set, based on the following considerations,

we did not pay much attention to the prediction results of

the training set:

1. when establishing the prediction model, the performance

of the verification set can represent the real application

effect;
Table 4 | Comparison of error indicators of the single prediction models and the weighted int

Stations Indicators MCEEMD-PSO-SVR

MaxAE (108m3) 12.43

MinAE (108m3) 0.05

Lijin MAE (108m3) 2.41

MAPE (%) 30.86

RMSE (108m3) 3.37

MaxAE (108m3) 13.93

MinAE (108m3) 0.08

Gaocun MAE (108m3) 2.51

MAPE (%) 15.58

RMSE (108m3) 3.21

MaxAE (108m3) 14.98

MinAE (108m3) 0.03

Aishan MAE (108m3) 2.35

MAPE (%) 16.42

RMSE (108m3) 3.21

://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.274/787311/jwc2020274.pdf
2. for the adaptive prediction model, we do not care about

the prediction performance of the training set;

3. the output of the training set is not a real prediction, it is

only an input to the model of the verification set.
Therefore, in the following sections, we just show the

prediction results of the verification set. The errors of the

weighted integrated model were compared with those of

the MCEEMD-PSO-SVR model, the MCEEMD-PSO-BP

model, and the MCEEMD-PSO-LSTM model, and the

results are shown in Table 4. It can be obviously seen

from Table 4 that the weighted integrated model has the

best performance and it outperforms the other models in

terms of all the error coefficients, acquiring the best MAE,

MAPE, and RMSE. The MAE, MAPE, and RMSE of the

integrated model in Lijin, Gaocun, and Aishan hydrological

stations were reduced by 24.36%–30.04%, 18.54%–24.82%,

8.63%–16.37%; 29.31%–34.66%, 10.91%–35.21%, 15.73%–

26.52%; and 16.17%–24.23%, 12.44%–13.55%, 13.08%–

16.22%, respectively, compared with the other three

models. In addition, the values of MaxAE and MinAE for

the integrated model and the difference between them

were the smallest of all models.

Figure 7 illustrates the runoff prediction of Lijin,

Gaocun, and Aishan stations by the MCEEMD-PSO-SVR,
egrated model in three hydrological stations

MCEEMD-PSO-BP MCEEMD-PSO-LSTM Integrated model

13.06 18.17 10.71

0.12 0.09 0.01

2.53 2.34 1.77

29.43 28.48 23.20

3.42 3.13 2.86

17.89 9.28 7.82

0.09 0.07 0.01

2.42 2.32 1.64

18.66 13.57 12.09

3.28 2.86 2.41

23.00 11.05 8.44

0.05 0.02 0.01

2.49 2.60 1.97

16.32 16.53 14.29

3.33 3.22 2.79



Figure 7 | Predicted and observed monthly runoff during verification period by single prediction models and the weighted integrated model in (a) Lijin hydrological station, (b) Gaocun

hydrological station, (c) Aishan hydrological station.
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MCEEMD-PSO-BP, MCEEMD-PSO-LSTM and the

weighted integrated model in the verification set. Figure 8

shows the scatter plots of predicted value and observed

value of the three stations using all models, respectively.

Some studies have found that atmospheric circulation

anomaly factors have a strong correlation with extreme

weather and climate anomalies (Wang ; Huang et al.

a, b, ; Liu et al. ; Yang et al. ). Unfortu-

nately, the present study mainly focused on the atmospheric

circulation anomaly factors to the overall effect of the runoff,

without considering the decomposition technique abnormal

atmospheric circulation factors for size (Meng et al. ).

Therefore, monthly scale data of Nino3.4, Arctic Oscillation

(AO), PacificDecadal Oscillation (PDO) andAtlanticMultide-

cadal Oscillation (AMO) were used as additions to each

frequency term of the input data of the weighted integrated

model to improve the accuracy and stability of runoff forecast-

ing during some periods. In order to select optimal factors, the

correlation coefficient method was used to analyze the runoff

frequency terms decomposed by MCEEMD and the atmos-

pheric circulation anomaly factors with different time

delays. Results are shown in Figure 9, where the darker the

shade represents the higher the correlation. The factors

whose correlation coefficient is greater than 0.3 were selected

as the additional term of input data. It can be seen from

Figure 9(a) that in Lijin station, Nino3.4 has significant influ-

ence on the high frequency term and the residual term,

while AMO has significant influence on the residual term. It
Figure 8 | The relationship of predicted and observed monthly runoff by single prediction mo

logical station, (c) Aishan hydrological station.

://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.274/787311/jwc2020274.pdf
can be seen from Figure 9(b) that in Gaocun station,

Nino3.4 has significant influence on the high frequency

term and medium frequency term, while PDO has significant

influence on the medium frequency term and lower frequency

term. It can be seen from Figure 9(c) that in Aishan station,

Nino3.4 has significant influence on the high frequency

term, lower frequency term, and residual term.

Atmospheric circulation anomaly factors that have sig-

nificant influence on each frequency term of runoff in the

above analysis were selected and used as additional eigen-

vectors to the weighted integrated model input data. In the

weighted integrated model, the frequency terms and the

atmospheric circulation anomaly factors were used as its

input data, and the model first obtained the prediction of

each frequency term and then reconstructed each frequency

term according to the weights to obtain the final runoff

prediction.

It can be seen from Table 5 that the weighted integrated

model combined with the information of atmospheric circu-

lation anomaly factors improved the runoff prediction

accuracy of each station in different degrees. The NSE of

each station increased by 1.05%–3.26%, the QR increased

by �2.67% to 8.97%, the RMSE decreased by 2.10%–

3.94%, and the difference between MaxAE and MinAE

decreased by 8.78%–24.11%, among which the QR of

Aishan station decreased by 2.67%, which may be due to

the weak influence of the atmospheric circulation anomaly

factor on Aishan station.
dels and the weighted integrated model in (a) Lijin hydrological station, (b) Gaocun hydro-



Figure 9 | Thermal diagram of the correlation coefficient between the frequency term of each station and the atmospheric circulation anomaly factor. (a) Lijin hydrological station, (b)

Gaocun hydrological station, (c) Aishan hydrological station.

Table 5 | Predictive changes of atmospheric circulation anomaly factors before and after

fusion

Stations NSE QR (%) RMSE (108m3) Difference (108m3)

Lijin 0.93→ 0.95 78→ 85 2.86→ 2.80 10.70→ 8.12

Gaocun 0.95→ 0.96 79→ 82 2.41→ 2.34 7.81→ 6.26

Aishan 0.92→ 0.95 75→ 73 2.79→ 2.68 8.43→ 7.69
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DISCUSSION

According to the residual term decomposed by MCEEMD

from the monthly runoff data of Lijin, Gaocun, and

Aishan hydrological stations, the overall runoff monitored

by stations showed a declining trend, especially in recent

years. It indicates that the lower reaches of the Yellow

River water shortage and other problems are increasingly

serious, one important reason it is necessary to improve

the accuracy of runoff prediction to promote the optimal

allocation of water resources and maximize the benefit of

water resources.

It appears from Table 4 that the MCEEMD-PSO-LSTM

model is second only to the weighted integrated model

based on MCEEMD in performance. In addition, it can be

found from Table 2 that the MCEEMD-PSO-LSTM model

has the largest weight in the weighted integrated model,

thus it can be explained that the weight determines the

importance of a single model in the weighted integrated

model and also indicates the performance of a single

model. It can be seen from Table 4 that, although the models’

errors are different, the differences among MCEEMD-PSO-

SVR, MCEEMD-PSO-BP, and MCEEMD-PSO-LSTM are
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.274/787311/jwc2020274.pdf
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not too large, which indicates that the three models are simi-

lar in the performance of runoff prediction. The integrated

model requires that the models that comprise it be close in

performance, and the discussion above reveals that the

three single models that comprise the integrated model

meet this requirement. Moreover, the use of the weight coef-

ficient further reduces the difference between single models,

so that the single model with good performance takes up a

larger proportion. In this way, the advantages of the model

are magnified and the disadvantages of the model are

reduced, which is conducive to improving the accuracy of

runoff prediction.

It can be seen in Figure 7(a) that the cycle and the trend

of the prediction results of the weighted integrated model

were completely consistent with the original monthly

runoff data in Lijin hydrological station. Moreover, the

weighted integrated model had the best predictive perform-

ance among all models. Similarly, it can be observed from

Figure 7(b) and 7(c) that the weighted integrated model

had the better performance compared with the other

models. In flood season, the weighted integrated model

had higher prediction accuracy than other models.

Figure 8 indicates that the weighted integrated model

had the best performance for forecasting the monthly

runoff, as the linear trend line of it was closest to the y ¼ x

that goes through the point (0,0) compared with the

MCEEMD-PSO-SVR, the MCEEMD-PSO-BP, and the

MCEEMD-PSO-LSTM. Similarly, the above conclusions

can also be observed from Figure 8(b) and 8(c). R2 rep-

resents the explanatory power of the equation variable x to

y, and the closer R2 to 1, the better the model fits the data.

It can be seen that the R2 of the weighted integrated
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model was the largest and closest to 1, which proves that the

prediction performance of it was the best of all models.

It can be observed in scatter plots that the peak values of

the weighted integrated model were mostly above the line of

y ¼ x, indicating that the forecasted peaks are lower than the

observed ones. This phenomenon may result from the limit-

ation of our model. However, the values, except the peak

value, in our model were evenly distributed around the

line y ¼ x compared with other models, indicating that its fit-

ting result had a better stability. In addition, the minimum

difference between MaxAE and MinAE also indicated that.

From Figure 9 it appears that the influences of abnormal

atmospheric circulation factors on the runoff of each station

are different. This is because in this paper, the locations of

the three hydrological stations are from west to east, and

the influence of different locations by the Asian summer

monsoon are different, so the correlation between the

runoff of hydrological stations and abnormal atmospheric

circulation factors is different.

Atmospheric circulation anomaly factors are greatly

affected by extreme weather and climate anomalies, and

the violent change of runoff in flood season is related to

extreme weather. Therefore, the integrated model has a

stronger ability to simulate the flood season runoff and its

extreme value after adding atmospheric circulation anomaly

factors, which improves the stability of the model and the

prediction accuracy.

For complicated and non-stationary monthly runoff, the

single prediction model has low accuracy and poor predic-

tion effect and is not suitable for medium- and long-term

prediction. CEEMD reduces the mutual interference

between different trend information, retains the objective

law of the original data, and provides a suitable data basis

for the prediction algorithm. However, if modeling and fore-

casting are carried out for each of the eight components

obtained after the decomposition of CEEMD, a large

amount of work and errors will be incurred. Therefore,

this study proposed MCEEMD, which reconstructed the

IMFs with similar fluctuation frequency and amplitude to

obtain the frequency terms, which is then used as the

input of the prediction algorithm. The weighted integrated

model combines the advantages of each algorithm and

determines the importance of each algorithm in the inte-

gration model according to the weight coefficient. By
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.274/787311/jwc2020274.pdf
combining the MCEEMD with the weighted integrated

model, runoff can be reduced into a stationary sequence to

increase the performance of prediction model, and the

defects of the single prediction algorithm were also reduced.

At the same time, the addition of abnormal atmospheric cir-

culation factors improves the stability and prediction

accuracy of the model under extreme weather conditions.
CONCLUSIONS

In order to improve the accuracy of runoff prediction, a

weighted integrated model based on MCEEMD was pro-

posed, which was verified by using the monthly runoff

data from three hydrological stations (Lijin, Gaocun,

Aishan). The MCEEMD reduces the calculation problem

caused by excessive components by establishing fre-

quency terms, and also solves the problem that

prediction algorithm has poor prediction effect on

IMF1. The weighted integrated model uses MCEEMD

to process training data, combines PSO-SVR, PSO-BP,

and PSO-LSTM, and integrates the advantages of each

single model, thus improving the prediction accuracy,

stability, and fitting effect of the single model. Compared

with single prediction models, the weighted integrated

model has a better performance in runoff prediction

and higher accuracy of prediction results. The prediction

results of the weighted integrated model are in line with

the hydrological prediction standard and have a high

reliability. Compared with the single prediction algor-

ithms, the MAE, MAPE, and RMSE of the weighted

integrated model were reduced by more than 15.81%,

10.91%, and 13.42%, respectively. Therefore, the combi-

nation of the MCEEMD method and weighted

integrated model is viable in the medium- and long-term

runoff prediction. In addition, it can also provide gui-

dance for flood control and drought relief.

Considering that runoff is affected by climate and

extreme weather, atmospheric circulation anomaly factors

with strong correlation with runoff were added and selected

as additional items of input data of the integrated model in

this study. The results show that the model combined with

atmospheric circulation anomaly factors has higher
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prediction accuracy and stability, especially in extreme

weather and flood seasons.
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