
CONFID
ENTIA

L
Live Profiler API

Generated on April 08,2021

Status: release 1.0.7

CONFID
ENTIA

L

ContentArmor Live Profiler

Contents

1 Main Page 2

1.1 Operation Modes . 2

1.2 Sequence Flow . 2

1.3 Other Interfaces . 3

1.3.1 Video I/O . 3

1.3.2 Configuration . 4

1.3.3 Forensic metadata . 4

1.3.4 Log mechanism . 4

1.3.5 Health monitoring . 5

1.4 Software Protection . 5

1.5 Support . 5

1.6 References . 5

2 File Index 5

2.1 File List . 5

3 File Documentation 6

3.1 CA_profilerAPI.h File Reference . 6

3.1.1 Data Structure Documentation . 7

3.1.2 Macro Definition Documentation . 8

3.1.3 Typedef Documentation . 8

3.1.4 Enumeration Type Documentation . 11

3.1.5 Function Documentation . 12

3.2 CA_profilerTsAPI.h File Reference . 15

3.2.1 Detailed Description . 16

3.2.2 Macro Definition Documentation . 16

3.2.3 Typedef Documentation . 16

3.2.4 Function Documentation . 17

Index 22

1 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

1 Main Page

1 Main Page

DISCLOSURE. This documentation contains ContentArmor (http://www.contentarmor.net) proprietary
and confidential information. Passing on and copying of this document, use, extraction and communication of its
content, is not permitted without written authorization from ContentArmor.

ContentArmor Live Profiler is one of the system components of ContentArmor Video Watermarking system. It is
responsible for preprocessing live encoded video feeds in preparation for watermarking embedding at a later stage
in the content delivery pipeline. It is delivered as a software library compiled for a target platform e.g. CentOS 7.0
or Debian Wheezy. The library can be integrated either with an interface at the elementary stream (ES) level or at
the transport stream (TS) level using slightly different APIs. Strictly speaking, the TS library is a wrapper on top of
the ES library. Moreover, the ES interface provides a finer control on latency.

1.1 Operation Modes

ContentArmor Live Profiler library can operate in different modes depending on the deployment scenario. These
operation modes currently include:

BROADCAST: the library introduces proprietary metadata as Supplemental Enhancement Information (SEI) Net-
work Abstraction Layer Units (NALU) incorporated in the ES access units (AUs) of the video feed. The watermarking
pace is set according to the number of marks found in the content. ContentArmor Embedder shall be placed further
downstream to embeded the desired payload in the video. This mode is currently incompatible with Adaptive Bit
Rate (ABR) content.

AB: the library generates two prewatermarked versions of the video stream (version A and version B) for each
input video stream of an ABR bundle. Another component has to be placed further downstream to create a unique
sequence of A-B video segments in order to encode a payload, e.g. using playlist manipulation or redirection at the
edge.

ABJIT: the library incorporates SEI NALUs to the ES AUs and the watermarking pace is set according to the A-
BR video fragmentation. ContentArmor Embedder shall be placed further downstream (typically in a Packager) to
generate the prewatermarked A/B version of a video segment on demand. As in AB mode, another component
further downstream is responsible for creating a unique sequence of A-B video segments in order to encode a
payload, e.g. using playlist manipulation or redirection at the edge.

ABRSEIALIGNED: the library incorporates SEI NALUs to the ES AUs and the watermarking pace is set according
to the ABR video fragmentation. ContentArmor Embedder shall be placed further downstream (typically at the edge)
to embed the desired payload in the video.

For more information on the integration of watermarking technologies in OTT environments, the interested reader
is redirected to [1].

1.2 Sequence Flow

The sequence flow of ContentArmor Live Profiler library consists of five (5) main steps.

1. General initialization: the application invokes the dedicated function of the ES/TS API to initialize the internals
of ContentArmor Live Profiler library e.g. the underlying video pipeline framework, the software protection
watchdog, the logger, etc.

2. Profiler instance creation: the application shall create a dedicated ContentArmor Live Profiler instance for
each video source to be processed. It is possible to create several instances in the same process to profile
several video sources in parallel.

© ContentArmor 2018. All rights reserved. 2

http://www.contentarmor.net

CONFID
ENTIA

L

ContentArmor Live Profiler

3. Video source setup: for each created instance of ContentArmor Live Profiler, the application shall declare the
individual input video elementary streams that are composing the video source associated to the instance.
Depending on the operation mode of the library, one or several video components can be declared for a
single instance. Moreover, the application shall declare which video component shall be used as reference
for resynchronization purposes at detection.

4. Profiling: once all the video components of a video source have been enlisted in an instance of ContentArmor
Live Profiler, the application can initiate profiling operations by feeding the library with video content on a
regular basis. Depending on the ES/TS interface, the library is fed in PUSH or PULL mode. Once opera-
tions have started, ContentArmor Live Profiler library issues a number of notifications to the main application
through the use of callback functions.

5. Profiler instance termination: the application can terminate a running instance of ContentArmor Live Profiler
at any time by invoking the dedicated function of the ES/TS API.

1.3 Other Interfaces

1.3.1 Video I/O

ContentArmor Live Profiler library can operate with video feeds that adhere to ContentArmor Encoding Guidelines
[2]. Please liaise with your ContentArmor representative if you do not have access to this document.

1.3.1.1 SEI preprovisioning

ContentArmor Live Profiler library does not have TS repacketization capabilities. As a result, when ContentArmor
Live Profiler library is integrated using the TS API and when the operating mode is expected to produce SEI NALUs,
the video feeds input to the library shall feature pre-provisioned SEI NALUs that will be filled with meaningful data
by the library.

ContentArmor is using user_data_unregistered SEI NALUs that are placed before the first slice NALU of
a non-referenced AU. As such, pre-provisioned SEI NALUs shall adhere to the following template [codec_sei-
_header][sei_payload_size][uuid_sei][tiny_sei][sei_filler] where:

• [codec_sei_header] is set to 0x0000 0106 05 in MPEG AVC or 0x0000 014E 0105 in MPEG
HEVC;

• [sei_payload_size] is set according to the bitrate of the video feed using MPEG size encoding con-
vention;

• [uuid_sei] is set to 0x436F 6E74 656E 7441 726D 6F72 5F56 574D;

• [tiny_sei] is set to 0xF782 FD49 1405 FFFF 4F4F;

• [sei_filler] contains 0xFFFF filling data to match the [sei_payload_size].

ContentArmor recommends to scale the length of the preprovisioned SEIs with the bitrate with a minimum of
48 bytes and a maximum of 512 bytes. As a reference, the following formula: sei_payload_size =
round(max(48,min(512,770∗log10(bitrate_kbps)-2032))) yields 48-bytes long SEIs until 500
kbps and 512-bytes long SEIs beyond 2 Mbps.

When using the ES interface, the integrator may delegate the insertion of the SEI NALUs in the video feed to
ContentArmor Live Profiler library. In this case, the induced overhead shall be accurately accounted for by the
en-/trans-coder to manage the Video Buffering Verifier (VBV).

3 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

1.3 Other Interfaces

1.3.1.2 ABR fragmentation signaling

For OTT ABR delivery, ContentArmor Live Profiler needs information about the video fragmentation that will be later
enforced by the video delivery protocol e.g. HLS, DASH, other. More specifically, the application needs to signal
all delivery chunk boundaries as well as aligned delivery chunk boundaries. The signaling of these boundaries is
explicit in the ES API by properly setting some binary flags when pushing an ES AU for processing. In contrast,
in the TS API, such signaling may be implicit e.g. using ATS EBP markers at the TS level [3,4]. In both cases,
the watermark embedding pace is set by design by the aligned chunk boundaries possibly complemented by PTS
information.

1.3.2 Configuration

ContentArmor Live Profiler library uses a configuration file config.ini to set up a number of internal parameters.
Those parameters are static and shared by all the concurrent instances of ContentArmor Live Profiler library. Such
parameters includes for instance the secret spreading sequence of the client and the operation mode of the library.

1.3.3 Forensic metadata

The library produces Watermark Forensic Metadata (WFM) at regular intervals. This data will be required to perform
watermark detection and shall be safely stored and properly indexed. The location where the library places WFM
on disk is specified in the configuration file config.ini.

[dbpush]
dboutputdir="/tmp/" // Metadata will be placed in subdirectories of this folder.

// (one per instance of ContentArmor Live Profiler)

In some particular operation modes, it is possible to move the generation of metadata out of ContentArmor Live
Profiler with an additional system component placed further downstream. Please contact your ContentArmor rep-
resentative if you want to enable this feature.

1.3.4 Log mechanism

ContentArmor Live Profiler library logs a number of information. Log messages are sent by default to the standard
output interface (stdout) and may be redirected by the application to manage their logs. Destination of log
messages is set using configuration file config.ini. ContentArmor Live Profiler library uses five level of logs (error,
warning, info, debug, specific). The log level is set using the configuration file config.ini.

[log]
level="info" // ContentArmor Live Profiler will provide ERROR, WARNING and INFO log messages
output="/var/log/contentarmor/tsprofiler.log" // Full path to the output log file

[log] output option can be templated with "%d" string that will be replaced by a timestamp corresponding to
the CA_Profiler_init() call date. For example, if CA_Profiler_init() is called the 91th day of year 2021 at 14h37m5s
and [log] output path is specified as "/var/log/contentarmor/tsprofiler_%d.log" then the log messages will
routed to the /var/log/contentarmor/tsprofiler_21091143705.log path.

Warning if the library does not have r/w access to the [log] output path, it will run in silent mode without
posting any logs message.

The library can create missing directories in the path, provided it runs with the necessary permissions. The "%d"
templated string can be used in the parent directories as well as in the file name. Although this is not very useful,
several "%d" in the path is also allowed. [log] output allows both absolute path orpath relative to the current
working directory of the application. If the path is specified as only a file name, then the directory will be the current
working directory of the application.

[log] output, instead of pointing to a regular file path, can point to a Linux named pipe path. In this case, the
named pipe should be created before the CA_Profiler_init() call.

© ContentArmor 2018. All rights reserved. 4

CONFID
ENTIA

L

ContentArmor Live Profiler

1.3.5 Health monitoring

ContentArmor Live Profiler provides statistics and alerts through a callback mechanism. Monitoring information
is emitted on a regular basis. The duration of this aggregation window can be modified in the configuration file
config.ini.

[camonitor]
aggwin=300000 // The aggregation window to report monitoring message is 5 minutes long.

1.4 Software Protection

ContentArmor Live Profiler library is protected by a license with an expiration date. Once the license has expired, the
Profiler operates in passthrough mode and the watermarking functionality is therefore deactivated. The application
can probe the library for the remaining license duration in order to raise relevant alarms and, possibly, trigger the
license update procedure. Due to the different software protection mechanisms, linking the library is performed
with a mock library at compilation time. The library shall then be substituted by the real implementation to run the
application.

1.5 Support

For enquiries during the integration of ContentArmor Live Profiler library, please send emails to Support at
support@contentarmor.net

1.6 References

[1] Forensic Watermarking Implementation Considerations for Streaming Media, Streaming Video Alliance, July
2018.

[2] Video Watermark v. 3.0, Encoding Guidelines, ContentArmor, February 2019

[3] OpenCable Specifications, Adaptive Transport Stream Specification, CableLabs, February 2014

[4] OpenCable Specifications, Encoder Boundary Points Specification, CableLabs, January 2013

2 File Index

2.1 File List

Here is a list of all files with brief descriptions:

CA_profilerAPI.h
Generic declarations for ContentArmor Live Profiler 6

CA_profilerTsAPI.h
TS specific extension for ContentArmor Live Profiler Application Programming Interface 15

5 © ContentArmor 2018. All rights reserved.

mailto:support@contentarmor.net

CONFID
ENTIA

L

3 File Documentation

3 File Documentation

3.1 CA_profilerAPI.h File Reference

Generic declarations for ContentArmor Live Profiler.

Data Structures

• struct t_CA_Rational

Data structure used for rational numbers. More...

• struct t_CA_ProfilerConfig

Data structure for Profiler configuration. More...

Macros

• #define CA_EXPORT __attribute__ ((visibility ("default")))

Typedefs

• typedef void(∗ t_CA_ProfilerMonitoringCallBack)(const char ∗p_jsonString)

Monitoring callback function to be implemented by the application.

• typedef void(∗ t_CA_ProfilerPushWFMCallBack)(unsigned int p_profilerId, const char ∗p_filePath)

WFM push callback function to be implemented by the application.

Enumerations

• enum t_CA_VideoCodec { CA_VIDEO_CODEC_AUTO = 0, CA_VIDEO_CODEC_UNKNOWN = 0, CA_VID-
EO_CODEC_AVC, CA_VIDEO_CODEC_HEVC }

List of supported video codecs.

• enum t_CA_ProfilerStatus {
CA_SUCCESS = 0, CA_INVALID_LICENSE, CA_LICENSE_EXPIRED, CA_MEMORY_ERROR,
CA_INPUT_QUEUE_FULL, CA_INVALID_PROFILERID, CA_INVALID_STREAMID, CA_INVALID_DURAT-
ION,
CA_INVALID_ARGUMENT, CA_ERROR_NOSTREAM, CA_ERROR_PROFILER_RUNNING, CA_LIB_NO-
T_INITIALIZED,
CA_INTERNAL_ERROR }

Enum of event error codes and function return codes.

© ContentArmor 2018. All rights reserved. 6

CONFID
ENTIA

L

ContentArmor Live Profiler

Functions

• CA_EXPORT t_CA_ProfilerStatus CA_Profiler_init (const char ∗p_licensePath, t_CA_ProfilerMonitoringCall-
Back p_monitoringCallback)

This function initializes the underlying video pipeline framework of ContentArmor Live Profiler library.

• CA_EXPORT t_CA_ProfilerStatus CA_Profiler_deinit ()

This function de-initializes the underlying video pipeline framework of ContentArmor Live Profiler library.

• CA_EXPORT t_CA_ProfilerStatus CA_Profiler_getLicenseRemainingTime (unsigned int ∗p_remainingTime)

This function is used to obtain the remaining license time of ContentArmor Live Profiler library.

• CA_EXPORT t_CA_ProfilerStatus CA_Profiler_updateLicense (const char ∗p_licensePath)

This function is used to update the license of ContentArmor Live Profiler library.

• CA_EXPORT const char ∗ CA_Profiler_getVersion ()

This function is used to obtain the version of ContentArmor Live Profiler library.

• CA_EXPORT unsigned int CA_Profiler_getNbOutputByStream ()

This function is used to obtain the number of output streams for each input stream.

• CA_EXPORT t_CA_ProfilerStatus CA_Profiler_getProfilerCustomData (unsigned int p_profilerId, const void
∗∗p_customData)

This function returns the private data that the application may have attached to a given instance of ContentArmor Live
Profiler.

• CA_EXPORT t_CA_ProfilerStatus CA_Profiler_getStreamCustomData (unsigned int p_profilerId, unsigned
int p_streamId, const void ∗∗p_customData)

This function returns private application data associated to an input video source of a running instance of Content-
Armor Live Profiler.

3.1.1 Data Structure Documentation

3.1.1.1 struct t_CA_Rational

This data structure is used to represent rational numbers by indicating their numerator and denominator. It is
typically used to specify the fps of a video source.

Data Fields

int num Numerator of the rational number.
int denom Denominator of the rational number.

3.1.1.2 struct t_CA_ProfilerConfig

This data structure is used to specify several configuration parameters when crating a new Profiler instance. It
includes watermark pace making information as well as the frequency of forensic metadata push.

7 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

3.1 CA_profilerAPI.h File Reference

Data Fields

unsigned int m_payloadSize Length in bits of the watermark payload. If set to zero, the watermark
payload is considered to be infinite.

unsigned int m_chunksPerBit In OTT distribution, this number indicated how many segments shall be
used to encode a single watermark payload bit. For, instance, if it is set to
1, it indicates that the index of the watermark payload bit shall be updated
each and every segment. When it is set to 0, it signals that the watermark
pace making logic is based on the number of marks per segment rather
than the number of segments.

unsigned int m_durationPer-
Bit

In OTT distribution, when this value is not set to zero, it indicates that the
watermark payload bit assigned to be embedded in a given segment shall
depend on the PTS information of the ATS EBP marker. For instance, the
watermark pace making logic may assign a watermark bit index using the
following formula: WM_bit_idx = floor(segment_pts_in_-
ms / m_durationPerBit) % m_payloadSize. As such, this
configuration parameter can be viewed as the duration of a watermark
bit in milliseconds.

unsigned int m_nbMinMarks This configuration parameter is ignored unless m_chunksPerBit is
set to 0. In that case, the watermark pace making logic guarantees that
the same watermark bit keeps being embedded as long as there is not
at least m_nbMinMarks along the worst case OTT delivery path.

unsigned int m_wfmSegment-
Duration

Duration in seconds between two pushes of WFM. This configuration
parameter specifies how frequently ContentArmor Live Profiler library
shall invoke the callback function t_CA_ProfilerPushWFMCall-
Back() to flush WFM tarballs.

3.1.2 Macro Definition Documentation

3.1.2.1 #define CA_EXPORT __attribute__ ((visibility ("default")))

3.1.3 Typedef Documentation

3.1.3.1 typedef void(∗ t_CA_ProfilerMonitoringCallBack)(const char ∗p_jsonString)

ContentArmor Live Profiler library issues at the end of every aggregation window monitoring information such as
statistics and alerts. On such occasions, this callback function is invoked by the library to notify the application that
new monitoring information is available. It is then up to the application to forward this monitoring information to the
supervision layer e.g. using an SNMP agent. The duration of the aggregation window, and thereby the frequency of
the monitoring messsages can be configured in the config.ini file.

ContentArmor Live Profiler emits three classes of monitoring messages: counter, stat and gauge. Monitoring
information is formatted as a JSON string containing the following keys:

© ContentArmor 2018. All rights reserved. 8

CONFID
ENTIA

L

ContentArmor Live Profiler

JSON key Class Description
time all Timestamp of the last

measurement taken into account in
the aggregation window using the
following format: DD/MM/YYYY
HH:mm:ss.SSS, where:

• DD is the day in month
(01-31) using two digits,

• MM is the month in year
(01-12) using two digits,

• YYYY is the year using four
digits,

• HH is the hour in day (00-23)
using two digits,

• mm is the minute in hour
(00-59) using two digits,

• ss is the seconds in minute
(00-59) using two digits,

• SSS is the milliseconds in
second (000-999) using
three digits.

type all metric only for the time being.
Other types may be introduced in
the future.

profiler all [optional] Identifies the Profiler
instance associated to the
monitoring message.

stream all [optional] Identifies the stream
associated to the monitoring
message.

tag all Identifies the metric associated to
the monitoring message.
ContentArmor Live Profiler
currently provides monitoring
information for the metrics
identified by the following tags:

• KFDrop (counter):
number of anchor frames
dropped because there was
no room in the fingerprinting
queue;

• NoWemListAvailable
(counter): number of
times the video processing
pipeline has been delayed
due to a shortage of WEM;

• NoWmiListAvailable
(counter): number of
times the video processing
pipeline has been delayed
du to a shortage of WMI;

• PPSMiss (counter):
number of times watermark
embedding changes had to
be discarded because there
was no pre-provisioned SEI;

• EsQueueFull
(counter): number of
times the video processing
pipeline has been delayed
because the input queue
(ES) was full;

• TsQueueFull
(counter): number of
times the video processing
pipeline has been delayed
because the input queue
(TS) was full;

• TP_Error (counter):
number of times a trapsport
packet could not be parsed
by the demux

• TpDuplicated
(counter): number of
duplicated trapsport packet
(packet having the same
continuity counter value that
previous tp)

• TpDiscontinuity
(counter): number of
times the demux has seen a
discontinuity in traposrt
packets (according to
continuity counter)

• PES_Error (counter):
number of times the video
processing pipeline has not
processed a PES because
its header is corrupted or it
is build from a transport
packet that is corrupted or a
transport packet that
correspond to a discontinuiy

• PTS_0_Change
(counter): number of
times the video processing
pipeline detect a change in
PTS_0 (remainder when
dividing the PTS of any
frame by the frame/field
duration)

• WfmWith-
Discontinuity
(alert): alert
that the generated
WFM archive will
not be usable to
detect watermark id
due to a
discontinuity in
input stream

• WfmWithTooManyPoc-
Wrap (alert):
alert that the
generated WFM
archive will not be
usable to detect
watermark id due to
PTS loopback in the
input stream

• FingKP (stat):
statistics about
the number of key
points per anchor
frame;

• WfmMarks (stat):
statistics about
the number of
embedding changes;

• BitMarks (stat):
statistics about
the number of
embedding changes
per EBP segment
(only relevant in
OTT);

• AnaSkip (stat):
statistics about
the number of
frames skipped by
the analyzer;

• FingFast (stat):
statistics about
the number of
frames skipped for
fingerprinting;

• Latency (stat):
statistics about
the latency of the
video processing
pipeline;

• LicRemDay (gauge):
remaining licensing
days (only emitted
the license is set
to expire within
the next month);

• LicRemHour (gauge):
remaining licensing
hours (only emitted
if the license is
set to expire
within the next
month).

9 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

3.1 CA_profilerAPI.h File Reference

count all Number of measurements
received during the
aggregation window. If
no measurement has been
received for a metric
during the aggregation
window, no monitoring
message is escalated
emitted by ContentArmor
Live Profiler.

max stat Maximum value of the
measurements received
during the aggregation
window.

min stat Minimum value of the
measurements received
during the aggregation
window.

sum stat Sum of the measurements
received during the
aggregation window.

avg stat Average value of the
measurements received
during the aggregation
window.

val gauge Last measurement
received during the
aggregation window.

Examples:

• Counter: {"time":"16/12/2019 16:15:36.148","type":"metric","profiler"-
:"1","stream":"2","tag":"NoWmiListAvailable","count":"44"}

• Stat: {"time":"16/12/2019 16:15:46.773","type":"metric","profiler"-
:"1","stream":"1","tag":"Latency","count":"1489","max":"458","min"-
:"0","sum":"115357","avg":"77"}

• Gauge: {"time":"17/12/2019 11:42:28.019","type":"metric","tag":"Lic-
RemDay","count":"1","val":"24"}

Parameters

in p_json-
String

JSON-formatted string containing monitoring
information.

3.1.3.2 typedef void(∗ t_CA_ProfilerPushWFMCallBack)(unsigned int p_profilerId, const char ∗p_filePath)

ContentArmor Live Profiler library generates Watermark Forensic Metadata (WFM) while processing video content.
This metadata is flushed at regular intervals as a tar.gz tarball. On such occasions, this callback function is
invoked by the library to notify the application to safely store this metadata archive and to index it in a reliable
database. This metadata will indeed be required to operate detection at a later stage. The location where the WFM
tarball are placed as well as the frequency at which they are created are configurable through the configuration file
(config.ini) of ContentArmor Live Profiler library. The name of the WFM tarball name is built from its starting
date and takes the form of YYDDDHHMMSSmmm_i.tar.gz, where :

• YY is the number of year since 2000 using two digits (00-99);

© ContentArmor 2018. All rights reserved. 10

CONFID
ENTIA

L

ContentArmor Live Profiler

• DDD is the number of days + 1 since January 1st using three digits (001-366);

• HH is the number of hours after midnight using two digits (00-23);

• MM is the number of minutes after the hour using two digits (00-59);

• SS is the number of seconds after the minute using two digits (00-59, and possibly 60 for leap seconds)

• mmm is the number of milliseconds after the second using 3 digits (000-999)

• i is the index of the WFM segment encoded using 32 bits (variable number of digits).

The timestamp YYDDDHHMMSSmmm is based on the UTC wall-clock time of the local host running ContentArmor
profiling library.

The index i of the WFM segment is intended to be incremental by construction. For BROADCAST operating
mode, it is equal to the DTS of the first AU comprised in the WFM segment divided by the duration of a WF-
M segment (in nanoseconds). For ABR operating modes, it is equal to the timestamp of the first aligned chunk
comprised in the WFM segment divided by the duration of a WFM segment (in nanoseconds). If the option
useebpacquisitiontime is set to true in the profiler section of the configuration file, the timestamp of
a chunk is the value of the field EBP_acquisition_time of ATS EBP signaling. Otherwise, it is the DTS of
the first AU of the chunk.

Parameters

in p_profilerId Positive integer identifying an existing instance of ContentArmor Live Profiler.
This value has been typically obtained by previously calling an instance cre-
ation function.

in p_filePath NULL-terminated string containing the absolute path of a .tar.gz file con-
taining Watermark Forensic Metadata.

Note

The management of the WFM database is critical to guarantee E2E operations of ContentArmor Video Wa-
termarking system. System designs shall therefore be discussed and approved by a ContentArmor represen-
tative.
In some operation modes, WFM is generated further downstream in the distribution pipeline. In such cases,
this callback is never invoked by ContentArmor Live Profiler library.

3.1.4 Enumeration Type Documentation

3.1.4.1 enum t_CA_VideoCodec

List of supported video codecs

Note

ContentArmor Live Profiler only supports MPEG AVC and HEVC video streams.

Enumerator

CA_VIDEO_CODEC_AUTO Codec to be retrieved from the PMT

CA_VIDEO_CODEC_UNKNOWN Other codecs

CA_VIDEO_CODEC_AVC MPEG AVC video stream

CA_VIDEO_CODEC_HEVC MPEG HEVC video stream

11 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

3.1 CA_profilerAPI.h File Reference

3.1.4.2 enum t_CA_ProfilerStatus

Enum of event error codes and function return codes

Enumerator

CA_SUCCESS The requested action has been performed successfully.

CA_INVALID_LICENSE The license file provided in input is invalid.

CA_LICENSE_EXPIRED The license file provided in input has expired.

CA_MEMORY_ERROR An error occured because memory could not be allocated.

CA_INPUT_QUEUE_FULL The requested action could not be performed because the processing queue is
currently full.

CA_INVALID_PROFILERID The requested action could not be performed because there is no ContentArmor
Live Profiler instance with the ID provided in input.

CA_INVALID_STREAMID The requested action could not be performed because the ContentArmor Live Pro-
filer instance does not have a video source associated to the stream ID provided in input.

CA_INVALID_DURATION The requested action could not be performed because the frame duration provided
in input is not compliant with the ones of the previously declared video sources.

CA_INVALID_ARGUMENT The requested action could not be performed because one of the input parame-
ters is invalid.

CA_ERROR_NOSTREAM An issue occurred because no video source is currently associated to the instance
of ContentArmor Live Profiler.

CA_ERROR_PROFILER_RUNNING Some action could not be performed because the instance of Content-
Armor Live Profiler is currrently running.

CA_LIB_NOT_INITIALIZED The requested action could not be performed because the library has not been
initialized.

CA_INTERNAL_ERROR An internal error occured.

3.1.5 Function Documentation

3.1.5.1 CA_EXPORT t_CA_ProfilerStatus CA_Profiler_init (const char ∗ p_licensePath,
t_CA_ProfilerMonitoringCallBack p_monitoringCallback)

ContentArmor Live Profiler library requires to initialize some internals of its video processing pipeline prior to launch-
ing any operation. This function requires the full path to a valid ContentArmor Live Profiler license file to terminate
successfully. ContentArmor Live Profiler library is protected by a license with an expiration date. If ContentArmor
Live Profiler library cannot be successfully initialized due to an issue related to the license, it operates in passthrough
mode and the watermarking functionality is therefore deactivated.

Parameters

in p_licensePath Full path to a ContentArmor Live Profiler license file.
in p_monitoring-

Callback
Callback function used by ContentArmor Live Profiler to notify the application
that some monitoring data (statistic or alert) is available. If set to NULL, no
monitoring information is provided by ContentArmor Live Profiler.

Return values

© ContentArmor 2018. All rights reserved. 12

CONFID
ENTIA

L

ContentArmor Live Profiler

CA_SUCCESS ContentArmor Live Profiler library has been successfully initialized.
CA_INVALID_ARGUMENT ContentArmor Live Profiler library has not been initialized properly because the

path to the provided license file is invalid. Either no path has been provided, or
the file does not exist, or the library does not have r/w access to this file.

CA_LICENSE_EXPIRED ContentArmor Live Profiler library has not been initialized properly because the
licensing period declared in the provided license file is over.

CA_INVALID_LICENSE ContentArmor Live Profiler library has not been initialized properly because the
provided license file is not valid.

CA_INTERNAL_ERROR ContentArmor Live Profiler library has not been initialized properly because the
underlying video processing framework initialization failed.

3.1.5.2 CA_EXPORT t_CA_ProfilerStatus CA_Profiler_deinit ()

When application has no running instance of ContentArmor Live Profiler and it no longer needs to open a new one,
this function can be called to release ContentArmor Live Profiler Library resources.

Return values

CA_SUCCESS ContentArmor Live Profiler library has been successfully de-initialized.
CA_ERROR_PROFILER_-

RUNNING
The library has not been de-initialized because some instances of ContentArmor
Live Profiler are still running.

CA_LIB_NOT_INITIALIZED The requested action could not be performed because the library has not been
previously initialized.

3.1.5.3 CA_EXPORT t_CA_ProfilerStatus CA_Profiler_getLicenseRemainingTime (unsigned int ∗ p_remainingTime)

ContentArmor Live Profiler library is protected by a license with an expiration date. Once the license has expired, the
Profiler operates in passthrough mode and the watermarking functionality is therefore deactivated. This function is
intended to provide means for the application to probe the library for the remaining license duration on a regular basis
and thus be alerted when the license expiration date is approaching. The Operator can then take the necessary
steps to update the license file.

Parameters

out p_remaining-
Time

Pointer to memory where the library shall store the remaining number of sec-
onds before the license expires.

Return values

CA_SUCCESS The license is valid and there is still remaining time.
CA_LIB_NOT_INITIALIZED The requested action could not be performed because the library has not been

initialized.
CA_LICENSE_EXPIRED The license is valid but there is no remaining time.
CA_INVALID_LICENSE The license is not valid.

3.1.5.4 CA_EXPORT t_CA_ProfilerStatus CA_Profiler_updateLicense (const char ∗ p_licensePath)

ContentArmor Live Profiler library is protected by a license with an expiration date. Once the license has expired,
the Profiler operates in passthrough mode and the watermarking functionality is therefore deactivated. This function
provides means to the Operator to update the license file without stopping running instances of ContentArmor
Live Profiler library. This function requires the full path to a ContentArmor license file. If the update operation is
successfull with a valid license, ContentArmor Live Profiler library operates normally, possibly resuming nominal
operations after a period in passthrough mode while the license was invalid/expired (before the update action).

13 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

3.1 CA_profilerAPI.h File Reference

Parameters

in p_licensePath Full path to a ContentArmor Live Profiler license file. This file is used to update
a running instance of ContentArmor Live Profiler library.

Return values

CA_SUCCESS ContentArmor Live Profiler license has been successfully updated.
CA_LIB_NOT_INITIALIZED ContentArmor Live Profiler license has not been updated because the initialization

process of the libary has not terminated succesfully prior to this call.
CA_INVALID_ARGUMENT ContentArmor Live Profiler license has not been updated because the path to the

provided license file is invalid. Either no path has been provided, or the file does
not exist, or the library does not have r/w access to this file.

CA_LICENSE_EXPIRED ContentArmor Live Profiler license has not been updated because the licensing
period declared in the provided license file is over.

CA_INVALID_LICENSE ContentArmor Live Profiler library has not been updated because the provided
license file is not valid.

3.1.5.5 CA_EXPORT const char∗ CA_Profiler_getVersion ()

This function is used to obtain the version of ContentArmor Live Profiler library.

Returns

NULL-terminated string containing the versioning information

3.1.5.6 CA_EXPORT unsigned int CA_Profiler_getNbOutputByStream ()

Depending on the operating mode declared in ContentArmor Live Profiler configuration file, the library may have a
different number of output streams per input stream. Typically, there is a one-to-one relationship except in AB mode
where there are two output streams per input. This function provides means to the application to know this number.

Returns

Number of output streams for each input stream

3.1.5.7 CA_EXPORT t_CA_ProfilerStatus CA_Profiler_getProfilerCustomData (unsigned int p_profilerId, const void ∗∗
p_customData)

The application has the opportunity to attach custom data to an instance of ContentArmor Live Profiler using the
parameter p_customData of an instance creation function. This function provides means to the application to
recover this custom data. This may be useful to implement callback functions when several instances are running
concurrently.

Parameters

in p_profilerId Positive integer identifying an existing instance of ContentArmor Live Profiler.
This value has been typically obtained by previously calling an instance cre-
ation function.

© ContentArmor 2018. All rights reserved. 14

CONFID
ENTIA

L

ContentArmor Live Profiler

out p_customData Pointer to the custom data attached to the instance of ContentArmor Live Pro-
filer ID p_profilerId. It is NULL if no custom data has been provided at
the creation time of the instance.

Return values

CA_SUCCESS ContentArmor Live Profiler successfully returned the requested custom data.
CA_INVALID_PROFILERID ContentArmor Live Profiler failed to return the requested custom data because

there is no ContentArmor Live Profiler instance with the ID value p_profiler-
Id.

3.1.5.8 CA_EXPORT t_CA_ProfilerStatus CA_Profiler_getStreamCustomData (unsigned int p_profilerId, unsigned int
p_streamId, const void ∗∗ p_customData)

The application has the opportunity to attach custom data to each video source of a running instance of Content-
Armor Live Profiler using the parameter p_customData of a video source declaration function. This function
provides means to the application to recover this custom data.

Parameters

in p_profilerId Positive integer identifying an existing instance of ContentArmor Live Profiler.
This value has been typically obtained by previously calling an instance cre-
ation function.

in p_streamId Integer value that identifies which video source of the ContentArmor Live Pro-
filer instance shall be considered for this function call. This value has been
typically obtained by previously calling a video source declaration function.

out p_customData Pointer to the custom data attached to the input video stream p_streamId
of ContentArmor Live Profiler instance p_profilerId.

Return values

CA_SUCCESS ContentArmor Live Profiler successfully returned the requested custom data.
CA_INVALID_PROFILERID ContentArmor Live Profiler failed to return the requested custom data because

there is no ContentArmor Live Profiler instance with the ID value p_profiler-
Id.

CA_INVALID_STREAMID ContentArmor Live Profiler failed to return the requested custom data because
the instance of ContentArmor Live Profiler does not feature any video source with
the stream ID value provided in input.

3.2 CA_profilerTsAPI.h File Reference

TS specific extension for ContentArmor Live Profiler Application Programming Interface.

Macros

• #define CA_TS_PACKET_SIZE (188)

Size in bytes of a TP.

• #define CA_PID_AUTO 0x1FFF

Value to be used when the PID must be retrieved from the stream.

15 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

3.2 CA_profilerTsAPI.h File Reference

Typedefs

• typedef unsigned int(∗ t_CA_ProfilerInputTPsCallBack)(unsigned int p_profilerId, unsigned int p_streamId,
unsigned char ∗p_buffer, unsigned int p_numPackets)

Callback function to be implemented by the application to provide input TPs to ContentArmor Live Profiler library.
• typedef void(∗ t_CA_ProfilerOutputTPsCallBack)(unsigned int p_profilerId, unsigned int p_streamId, un-

signed int p_outputIndex, const unsigned char ∗p_buffer, unsigned int p_numPackets)

Callback function to be implemented by the application to flush TPs output by ContentArmor Live Profiler library.

Functions

• CA_EXPORT t_CA_ProfilerStatus CA_ProfilerTS_open (t_CA_ProfilerConfig p_config, const void ∗p_-
customData, t_CA_ProfilerInputTPsCallBack p_inputTPsCallBack, t_CA_ProfilerOutputTPsCallBack p_-
outputTPsCallBack, t_CA_ProfilerPushWFMCallBack p_pushWFMCallBack, unsigned int ∗p_profilerId)

This function creates an instance of a ContentArmor Live Profiler.
• CA_EXPORT t_CA_ProfilerStatus CA_ProfilerTS_addStream (unsigned int p_profilerId, const void ∗p_-

customData, bool p_isReferenceStream, unsigned int p_videoPid, unsigned int p_bitrate, t_CA_VideoCodec
p_codec, t_CA_Rational p_frameRate, unsigned int p_maxAuRxTime, unsigned int ∗p_streamId)

This function adds an input video stream to be profiled by a ContentArmor Live Profiler.
• CA_EXPORT t_CA_ProfilerStatus CA_ProfilerTS_start (unsigned int p_profilerId)

This function starts processing all input video streams to be profiled by an existing instance of ContentArmor Live
Profiler.

• CA_EXPORT t_CA_ProfilerStatus CA_ProfilerTS_close (unsigned int p_profilerId)

This function terminates an existing ContentArmor Live Profiler instance.

3.2.1 Detailed Description

When ContentArmor Live Profiler API is used at the transport stream (TS) level, the processing pipeline operates
Transport Packet (TP) by TP. Once an instance has been created and configured, the library is pulling on a regular
basis lines of input TPs which the application is expected to turn in rapidly. The library also uses callback functions
to notify the application (i) to request memory allocation, (ii) to flush TPs further downstream, and (iii) to notify that
forensic metadata has been created and shall be securely stored and properly indexed in a database.

Note

It is on ContentArmor’s roadmap to switch to a PUSH input at some point in time. One of the objectives is to
be VBR compliant.

3.2.2 Macro Definition Documentation

3.2.2.1 #define CA_TS_PACKET_SIZE (188)

Size in bytes of a TP

3.2.2.2 #define CA_PID_AUTO 0x1FFF

Value to be used when the PID must be retrieved from the stream

3.2.3 Typedef Documentation

3.2.3.1 typedef unsigned int(∗ t_CA_ProfilerInputTPsCallBack)(unsigned int p_profilerId, unsigned int p_streamId, unsigned
char ∗p_buffer, unsigned int p_numPackets)

When ContentArmor Live Profiler API is used at the TS level, the library operates in PULL mode and is responsible
for requesting TPs to process to the application. To do so, it invokes this callback function to notify the application
to provide additional TPs to process. The application is expected to return these TPs as fast as possible.

© ContentArmor 2018. All rights reserved. 16

CONFID
ENTIA

L

ContentArmor Live Profiler

Parameters

in p_profilerId Positive integer identifying an existing instance of ContentArmor Live Profiler.
This value has been typically obtained by previously calling CA_Profiler-
TS_open().

in p_streamId Integer value that identifies which input video source of the ContentArmor Live
Profiler instance shall be considered for this function call.

out p_buffer Pointer to a buffer that needs to be filled with TPs coming from the input video
source p_streamId. Memory allocation and release of this buffer is managed
inside ContentArmor Live Profiler library.

in p_numPackets Number of TPs to copy in the buffer p_buffer.

Returns

The number of TPs effectively copied by the application in the buffer p_buffer.

3.2.3.2 typedef void(∗ t_CA_ProfilerOutputTPsCallBack)(unsigned int p_profilerId, unsigned int p_streamId, unsigned int
p_outputIndex, const unsigned char ∗p_buffer, unsigned int p_numPackets)

ContentArmor Live Profiler library invokes this callback function when it finalizes processing an ES AU and wants to
flush the corresponding TPs out of its processing pipeline. The library expects a fast turn-around time of the function
as it is on the critical path of the processing pipeline. The application shall assume that the memory pointed to by
p_buffer will no longer be available after this function exits.

Parameters

in p_profilerId Positive integer identifying an existing instance of ContentArmor Live Profiler.
This value has been typically obtained by previously calling CA_Profiler-
TS_open().

in p_streamId Integer value that identifies which input video source of the ContentArmor Live
Profiler instance shall be considered for this function call.

in p_outputIndex Integer value that signals which output stream is being flushed. In mode AB,
output index 0 (resp. 1) is associated to the prewatermarked version A (resp.
B). In all other modes, there is a single ouput stream per input stream and the
output index is set to 0.

out p_buffer Pointer to a buffer that contains the output TPs for the input video source p-
_streamId that need to be pushed further downstream by the application.
Memory allocation and release of this buffer is managed inside ContentArmor
Live Profiler library.

in p_numPackets Number of TPs in p_buffer that need to be flushed.

3.2.4 Function Documentation

3.2.4.1 CA_EXPORT t_CA_ProfilerStatus CA_ProfilerTS_open (t_CA_ProfilerConfig p_config, const void ∗
p_customData, t_CA_ProfilerInputTPsCallBack p_inputTPsCallBack, t_CA_ProfilerOutputTPsCallBack
p_outputTPsCallBack, t_CA_ProfilerPushWFMCallBack p_pushWFMCallBack, unsigned int ∗ p_profilerId)

An instance of ContentArmor Live Profiler needs to be created before starting processing one or several video
streams (in case of OTT ABR delivery). To operate, an instance needs three callback functions to manage the
inputs and outputs of the library: p_inputTPsCallBack(), p_outputTPsCallBack(), and p_pushW-
FMCallBack(). The application can also attach its own custom data to an instance of ContentArmor Live Profiler
if needed. If successful, the function returns a handle to the newly created instance.

17 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

3.2 CA_profilerTsAPI.h File Reference

Parameters

in p_config Data structure used to set the per instance configuration parameters.
in p_customData Pointer to a memory location where opaque data is stored that the application

may attach to an instance of ContentArmor Live Profiler to manage its inter-
nals, e.g. the implementation of the callback function. It may be set to NULL if
the application does not need it.

in p_inputTPsCall-
Back

Callback function used by an instance of ContentArmor Live Profiler to request
input TPs to the application.

in p_outputTPs-
CallBack

Callback function used by an instance of ContentArmor Live Profiler to flush
output TPs out of the processing pipeline.

in p_pushWFM-
CallBack

Callback function used by ContentArmor Live Profiler to notify the applica-
tion that some Watermark Forensic Metadata has been produced and shall be
safely stored and indexed in a database.

out p_profilerId Pointer to a memory location where the integer value that identifies the in-
stance of ContentArmor Live Profiler created with this function call is stored.
The returned value of p_profilerId is typically incremented after each call to
CA_ProfilerTS_open(). In case of error, it is set to NULL.

Return values

CA_SUCCESS An instance of ContentArmor Live Profiler has been successfully created.
CA_INVALID_ARGUMENT The creation of a new ContentArmor Live Profiler instance has failed because

the provided input arguments are invalid. In general, either the value of p_-
profilerId is NULL or one of the provided callback functions is NULL. When
Watermark Forensic Metadata generation is deported, the callback p_pushWF-
MCallBack() can be set to NULL.

CA_INVALID_LICENSE The creation of a new ContentArmor Live Profiler instance has failed because the
license file is not valid.

CA_LICENSE_EXPIRED The creation of a new ContentArmor Live Profiler instance has failed because the
licensing period declared in the license file is over.

CA_MEMORY_ERROR The creation of a new ContentArmor Live Profiler instance has failed because the
library failed to allocate memory.

CA_INTERNAL_ERROR The creation of a new ContentArmor Live Profiler instance has failed because the
underlying video processing pipeline could not be created.

CA_LIB_NOT_INITIALIZED The requested action could not be performed because the library has not been
previously initialized.

3.2.4.2 CA_EXPORT t_CA_ProfilerStatus CA_ProfilerTS_addStream (unsigned int p_profilerId, const void ∗
p_customData, bool p_isReferenceStream, unsigned int p_videoPid, unsigned int p_bitrate, t_CA_VideoCodec
p_codec, t_CA_Rational p_frameRate, unsigned int p_maxAuRxTime, unsigned int ∗ p_streamId)

Once a ContentArmor Live Profiler instance has been successfully created, video streams have to be incorporated
one by one to the video processing pipeline. One of the video streams to be added to an instance of ContenArmor
Live Profiler shall be set as the reference to be used for resynchronization purposes. In OTT ABR, this reference
stream shall be the video track in the ABR bundle with the highest frame rate, largest resolution, and biggest ES
bitrate (in decreasing order of importance). The reference stream is signaled with a dedicated binary flag p_is-
ReferenceStream when adding a video stream to the video processing pipeline.

Parameters

in p_profilerId Positive integer identifying an existing instance of ContentArmor Live Profiler.
This value has been typically obtained by previously calling CA_Profiler-
TS_open().

© ContentArmor 2018. All rights reserved. 18

CONFID
ENTIA

L

ContentArmor Live Profiler

in p_customData Pointer to custom data that may be attached to the input video stream. pro-
vided in input. It shall be set to NULL if no custom data is used.

in p_isReference-
Stream

Binary flag used to signal that the added video stream shall be considered as
the reference for resynchronization purposes. There shall be a single refer-
ence stream per instance of ContentArmor Live Profiler.

in p_videoPid Positive integer value that gives the PID of the TPs associated to the video
source that shall be added to the instance of ContentArmor Live Profiler. This
parameter can be set to CA_PID_AUTO if:

1. A Program Mapping Table (PMT) is present in the input transport stream;
in that case, ContentArmor Live Profiler selects the first video stream for
profiling.

2. There is no PMT but the stream contains a single video stream and only
video TPs. In that case, no TP filtering is needed since it has been done
prior to feeding ContentArmor Live Profiler library.

in p_bitrate Positive integer value that gives the TS bitrate in kbps for this input bitstream.
This value shall be accurately set as it impacts both (i) the dimensioning of
ConentArmor Live Profiler internal TP circular buffer and (ii) the frequency at
which the library invokes the callback function p_inputTPsCallBack()
to fetch input TPs to process.

in p_codec Video codec of the input ES video stream. ContentArmor Live Profiler currently
supports AVC (CA_VIDEO_CODEC_AVC) and HEVC (CA_VIDEO_CODE-
C_HEVC) video streams. If the stream contains a PMT, this parameter can be
set to CA_VIDEO_CODEC_AUTO to retrieve the codec information from the
PMT.

in p_frameRate Frame rate of the input ES video stream. ContentArmor Live Profiler currently
supports ABR bundles where the frame rate of the different tracks is either the
same or a multiple of each others.

in p_maxAuRx-
Time

Positive integer value that gives the maximum reception time of an access unit
in microseconds. This value shall be accurately set as it impacts the dimen-
sioning of ContentArmor Live Profiler internal TP circular buffer.

out p_streamId Pointer to a memory location where the integer value that ContentArmor Live
Profiler uses to identify the added video stream is stored. The value of p_-
streamId is typically incremented after each call to CA_ProfilerTS_-
addStream().

19 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

3.2 CA_profilerTsAPI.h File Reference

Return values

CA_SUCCESS The input video bitstream has been successfully added to the video processing
pipeline of this instance of ContentArmor Live Profiler.

CA_INVALID_PROFILERID The input video bitstream has not been added to the video processing pipeline
because there is no ContentArmor Live Profiler instance with the ID value p_-
profilerId.

CA_INVALID_CODEC The input video bitstream has not been added to the video processing pipeline
because the codec provided in input is not supported by ContentArmor Live Pro-
filer.

CA_INVALID_DURATION The input video bitstream has not been added to the video processing pipeline be-
cause the frame duration provided in input is not coherent with the ones declared
for other renditions.

CA_INVALID_ARGUMENT The input video bitstream has not been added to the video processing pipeline
because one of the provided input argument is not valid. For instance,

• The frame rate provided in input is not coherent with the ones declared for
other renditions.

• The flag p_isReferenceStream is set to TRUE whereas another
video stream, previously added to this instance of ContentArmor Live Pro-
filer, has been declared as the reference stream.

CA_ERROR_PROFILER_-
RUNNING

The input video bitstream has not been added to the video processing pipeline
because the instance of ContentArmor Live TS Profiler is already started.

CA_MEMORY_ERROR The input video bitstream has not been added to the video processing pipeline
because the library failed to allocate some memory.

CA_INTERNAL_ERROR The input video bitstream has not been added to the video processing pipeline
because an error occured at the video framework level.

3.2.4.3 CA_EXPORT t_CA_ProfilerStatus CA_ProfilerTS_start (unsigned int p_profilerId)

Once all video sources have been added to an instance of ContentArmor Live Profiler using the function CA_-
ProfilerTS_addStream(), profiling operations can be started by invoking this function. Once started, the
application shall no longer call the function CA_ProfilerTS_addStream() to modify the configuration of this
instance.

Once an instance of ContentArmor Live Profiler has been started, a thread is initiated for each video stream added
to the instance. Each of these threads fetches input TPs for the corresponding video stream, using the callback
function p_inputTPsCallBack() regularly. ContentArmor library is expecting to be fed with all TPs associated
to a video source in transmission order. When processing an ES AU is finalized, the library flushes the correspond-
ing output TPs using the function p_outputTPsCallBack(). The threads of the different video streams are
terminated when the application calls the function CA_ProfilerTS_close().

In OTT ABR, ContentArmor Live Profiler with a TS interface is relying on ATS EBP markers for watermak pace
making. The video segmentation shall be consistent accross the different video sources attached to the instance of
ContentArmor Live Profiler.

Parameters

in p_profilerId Positive integer identifying an existing instance of ContentArmor Live Profiler.
This value has been typically obtained by previously calling CA_Profiler-
TS_open().

© ContentArmor 2018. All rights reserved. 20

CONFID
ENTIA

L

ContentArmor Live Profiler

Return values

CA_SUCCESS The instance of ContentArmor Live Profiler has been successfully started.
CA_INVALID_PROFILERID The instance of ContentArmor Live Profiler has not been started because there is

no ContentArmor Live Profiler instance with the ID value p_profilerId.
CA_ERROR_NOSTREAM The instance of ContentArmor Live Profiler has not been started because no video

stream has been added to this instance using the function CA_ProfilerTS_-
addStream() prior to this call.

CA_INTERNAL_ERROR The instance of ContentArmor Live Profiler has not been started because the
underlying video processing pipeline could not be started.

3.2.4.4 CA_EXPORT t_CA_ProfilerStatus CA_ProfilerTS_close (unsigned int p_profilerId)

When this function is invoked, the running instance of ContentArmor Live Profiler stops accepting new video content
in input. The processing of all TPs already present in the different processing queues of the instance is finalized
before flushing the result further downstream. Eventually, the instance of ContentArmor Live Profiler is destroyed.

Parameters

in p_profilerId Positive integer identifying an existing instance of ContentArmor Live Profiler.
This value has been typically obtained by previously calling an instance cre-
ation function.

Return values

CA_SUCCESS ContentArmor Live Profiler successfully destroyed the specified instance of
ContentArmor Live Profiler.

CA_INVALID_PROFILERID ContentArmor Live Profiler failed to destroy the specified instance of Content-
Armor Live Profiler because there is no instance with the ID value p_-
profilerId.

21 © ContentArmor 2018. All rights reserved.

CONFID
ENTIA

L

Index

CA_ERROR_NOSTREAM
CA_profilerAPI.h, 12

CA_ERROR_PROFILER_RUNNING
CA_profilerAPI.h, 12

CA_INPUT_QUEUE_FULL
CA_profilerAPI.h, 12

CA_INTERNAL_ERROR
CA_profilerAPI.h, 12

CA_INVALID_ARGUMENT
CA_profilerAPI.h, 12

CA_INVALID_DURATION
CA_profilerAPI.h, 12

CA_INVALID_LICENSE
CA_profilerAPI.h, 12

CA_INVALID_PROFILERID
CA_profilerAPI.h, 12

CA_INVALID_STREAMID
CA_profilerAPI.h, 12

CA_LIB_NOT_INITIALIZED
CA_profilerAPI.h, 12

CA_LICENSE_EXPIRED
CA_profilerAPI.h, 12

CA_MEMORY_ERROR
CA_profilerAPI.h, 12

CA_SUCCESS
CA_profilerAPI.h, 12

CA_VIDEO_CODEC_AUTO
CA_profilerAPI.h, 11

CA_VIDEO_CODEC_AVC
CA_profilerAPI.h, 11

CA_VIDEO_CODEC_HEVC
CA_profilerAPI.h, 11

CA_VIDEO_CODEC_UNKNOWN
CA_profilerAPI.h, 11

CA_profilerAPI.h
CA_ERROR_NOSTREAM, 12
CA_ERROR_PROFILER_RUNNING, 12
CA_INPUT_QUEUE_FULL, 12
CA_INTERNAL_ERROR, 12
CA_INVALID_ARGUMENT, 12
CA_INVALID_DURATION, 12
CA_INVALID_LICENSE, 12
CA_INVALID_PROFILERID, 12
CA_INVALID_STREAMID, 12
CA_LIB_NOT_INITIALIZED, 12
CA_LICENSE_EXPIRED, 12
CA_MEMORY_ERROR, 12
CA_SUCCESS, 12
CA_VIDEO_CODEC_AUTO, 11
CA_VIDEO_CODEC_AVC, 11
CA_VIDEO_CODEC_HEVC, 11
CA_VIDEO_CODEC_UNKNOWN, 11

CA_EXPORT
CA_profilerAPI.h, 8

CA_PID_AUTO

CA_profilerTsAPI.h, 16
CA_Profiler_deinit

CA_profilerAPI.h, 13
CA_Profiler_getLicenseRemainingTime

CA_profilerAPI.h, 13
CA_Profiler_getNbOutputByStream

CA_profilerAPI.h, 14
CA_Profiler_getProfilerCustomData

CA_profilerAPI.h, 14
CA_Profiler_getStreamCustomData

CA_profilerAPI.h, 15
CA_Profiler_getVersion

CA_profilerAPI.h, 14
CA_Profiler_init

CA_profilerAPI.h, 12
CA_Profiler_updateLicense

CA_profilerAPI.h, 13
CA_ProfilerTS_addStream

CA_profilerTsAPI.h, 18
CA_ProfilerTS_close

CA_profilerTsAPI.h, 21
CA_ProfilerTS_open

CA_profilerTsAPI.h, 17
CA_ProfilerTS_start

CA_profilerTsAPI.h, 20
CA_profilerAPI.h, 6

CA_EXPORT, 8
CA_Profiler_deinit, 13
CA_Profiler_getLicenseRemainingTime, 13
CA_Profiler_getNbOutputByStream, 14
CA_Profiler_getProfilerCustomData, 14
CA_Profiler_getStreamCustomData, 15
CA_Profiler_getVersion, 14
CA_Profiler_init, 12
CA_Profiler_updateLicense, 13
t_CA_ProfilerMonitoringCallBack, 8
t_CA_ProfilerPushWFMCallBack, 10
t_CA_ProfilerStatus, 11
t_CA_VideoCodec, 11

CA_profilerTsAPI.h, 15
CA_PID_AUTO, 16
CA_ProfilerTS_addStream, 18
CA_ProfilerTS_close, 21
CA_ProfilerTS_open, 17
CA_ProfilerTS_start, 20
t_CA_ProfilerInputTPsCallBack, 16
t_CA_ProfilerOutputTPsCallBack, 17

t_CA_ProfilerConfig, 7
t_CA_Rational, 7
t_CA_ProfilerInputTPsCallBack

CA_profilerTsAPI.h, 16
t_CA_ProfilerMonitoringCallBack

CA_profilerAPI.h, 8
t_CA_ProfilerOutputTPsCallBack

CONFID
ENTIA

L

ContentArmor Live Profiler

CA_profilerTsAPI.h, 17
t_CA_ProfilerPushWFMCallBack

CA_profilerAPI.h, 10
t_CA_ProfilerStatus

CA_profilerAPI.h, 11
t_CA_VideoCodec

CA_profilerAPI.h, 11

23 © ContentArmor 2018. All rights reserved.

	1 Main Page
	1.1 Operation Modes
	1.2 Sequence Flow
	1.3 Other Interfaces
	1.3.1 Video I/O
	1.3.2 Configuration
	1.3.3 Forensic metadata
	1.3.4 Log mechanism
	1.3.5 Health monitoring

	1.4 Software Protection
	1.5 Support
	1.6 References

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 CA_profilerAPI.h File Reference
	3.1.1 Data Structure Documentation
	3.1.2 Macro Definition Documentation
	3.1.3 Typedef Documentation
	3.1.4 Enumeration Type Documentation
	3.1.5 Function Documentation

	3.2 CA_profilerTsAPI.h File Reference
	3.2.1 Detailed Description
	3.2.2 Macro Definition Documentation
	3.2.3 Typedef Documentation
	3.2.4 Function Documentation

	Index

