
Programming Task 3
Write a program for the TC computer, in TCL programming language (make sure to have read
their description in Edux, in "Materials" section), computing the square of the given number, in a
way which avoids an arithmetic overflow.

The program should assume that the architecture is 32-bit, so one register can hold (using the signed
convention) an integer from the range [-231, 231-1]. While the input number n will fit within that
range, its square not necessarily so. In such case, the program should print out the square in two
pieces (see the “Output” section below).

Input
The input to the program consists of a single positive integer n, lower than 108.

Output
If the number n2 has 8 or less digits, the output should contain n2 and nothing more.

Otherwise, the output should consist of two lines:

• In the first line, you should print out n2 except for its last 8 digits;
• In the second line, you should print out the number formed from the last 8 digits of n2

(removing the leading zeroes; see Example 3).

Examples

Example 1

For the input

1234

the output should consist of one line:

1522756

Example 2

For the input

12345678

the output should consist of two lines:

1524157
65279684

because 123456782 = 152415765279684.

Example 3

For the input

449556

the output should consist of two lines:

2021
597136

because 4495562 = 202100597136. Since the last 8 digits of that number is 00597136, and TCL
always prints positive integers without leading zeroes, we exceptionally expect only 6 digits
(597136) in the second line of the output.

Bonus (20%)
You can gain additional 20% of points by printing additionally (i.e. after the output described
above) all the digits of n2, each in a separate line, in reversed order (this requirement is introduced
here for your convenience). For example, for the input from Example 3:

449556

your program in the bonus version should print out:

2021
597136
6
3
1
7
9
5
0
0
1
2
0
2

Note that you should print out exactly all the digits of n2 – don’t skip any inner zeroes; also don’t
add any leading zeroes around the whole number.

Assumptions
• The input to the program will consist of one positive integer, lower than 108.
• The program will be run with the following values of the constructional parameters of the

TC computer:
◦ number of registers (N): 100
◦ register size in bits (K): 32
◦ number of data memory cells (S): 2000
◦ the address of the beginning of stack (B): 1000
◦ number of instruction memory cells (T): 1000
In other words, the program will be run in the TCE emulator with the command:

python3 tce.py 100 32 2000 1000 1000 <your_tcl_file>

Requirements
Your solution must be implemented in the TCL language described in the “Materials” section!

Caution: Our assembly-level TCL language has nothing in common with another language known
more widely (e.g. in Wikipedia) under the name "Tcl". Do not use that other Tcl; such programs will
not be accepted.

Hint
Since the result of an ordinary multiplication n * n may not fit within 1 register, one needs to
perform this multiplication “piece by piece”, in more steps.

An intuitive approach here is the so-called long multiplication – which we all learned at school. By
splitting the number to digits and acting digit by digit, we’re all able to compute a square of an
arbitrarily large number, while de facto only touching numbers below 100 for the whole time!

That’s a good lead already; you can use just it to solve the problem, though at the cost of writing
much code.

However, an even better idea is to split n into fragments that are not so small. Why work on single
digits when a register is as large as 32 bits? Maybe it’d be simpler to use e.g. pairs of digits? (Or, in
more technical terms, to perform long multiplication in a positional system of base 100, rather than
the traditional decimal one?) Or maybe use even coarser fragments? I’m leaving nailing down the
details to you.

(Side note: the “thick digits” trick is recommended also for those who attack the bonus version).

Final remark
In the "Materials" section in Edux, I published an emulator for the TC computer and TCL
language. I strongly recommend using it - it should greatly help in testing your work in progress.

Submitting solutions
Solutions should be sent by June 21 to the address:
dominika.pawlik+tak21l+prog3@pjwstk.edu.pl .

mailto:dominika.pawlik+tak21l+prog3@pjwstk.edu.pl

	Input
	Output
	Examples
	Bonus (20%)
	Assumptions
	Requirements
	Hint
	Final remark
	Submitting solutions

