
PRACTICAL PART – THE TC
COMPUTER EMULATOR

The practical part of this course will involve low-level programming for a fake
computer designed only for the purpose of this course, called TAK computer (or
TC). 

Since TC does not exist physically, we will in fact write programs for an emulator
of its architecture, running on standard (e.g. x86) machines. The emulator will
accept a program, written in an assembly-style TAK computer language (TCL),
and simulate how it would execute on a TC computer. The emulator will be called
TCE (TAK Computer Emulator).

Some aspects of the language will be denoted as [OPTIONAL] – this means that
you  won’t  strictly  need them to  solve  any programming  task;  however,  they
touch  important  and  standard  aspects  of  low-level  programming,  so  you’re
welcome to understand them (and potentially use them to simplify or optimize
your code).

TC computer – architecture model

The architecture model of the TC computer is based on the von Neumann model,
though with one important difference – the memory block will  be split  to two
disjoint sub-blocks: data memory and instruction memory.

The architecture model of a TC computer.



This complies with the Harvard computer model, which analogously distinguishes
data memory and instructions memory. Such split can be found in practice in
micro-controllers, where data memory is often of a volatile RAM type, while the
instructions are essentially fixed and hence stored in permanent  memory of ROM
type.

A 32-bit CORTEX microcontroller – with clock frequency 24 MHz, 8 kiB RAM and 64 kiB ROM
(source: www.botland.com.pl)

Note

Micro-controllers play a crucial role in many areas where electronics
touches  everyday  life.  They  are  installed  e.g.  in  cars,  intelligent
fridges, TVs, and even toys.

TC computer – architecture details

To define the architecture of TC computer in full detail, we need to specify e.g.
the  sizes  of  various  types  of  its  memory.  For  a  broader  generality,  we  will
introduce several constructional parameters:

 K – the size of a processor register or a data memory cell (in bits),
 N – the number of regular processor registers,
 S – the number of data memory cells,

o B – the address of the beginning of stack inside data memory,
 T – the number of instruction memory cells.

Let’s now discuss the computer units in more detail.

Processor

The processor consists of the following binary registers (of size K bits each):

 regular registers in the execution unit (EU):



o N registers purposed for storing temporary data: arguments for or 
results of processor instructions,

o indexing: from 0 up to N-1: R0, R1, …, R(N-1),
 special registers in the control unit (CU):

o IAR (Instruction Address Register) – always storing the address of
the currently executed instruction in the instruction memory,

o IRCR (Instruction Return Code Register) – storing the return code
of  most  recently  executed  instruction,  i.e.  0  if  the  instruction
succeeded, and a number indicating the type of error otherwise; the
details will depend on instruction type and will be discussed below,

o SHR (Stack Head Register) – storing the current address of the stack
head in the data memory.

Special registers can be used in TCL code just like normal registers, except
for that only control unit can modify their values – they can’t be modified
directly  in  the  code.  Any  such  attempt  (like  e.g.  MOV IAR IRCR)  will
produce an error.

Data memory

The data memory (in short: DM) consists of S cells (of size K bits each), denoted
DM0, DM1, …, DM(S-1). It is further split into two blocks with different type of
access:

 the first  B cells (DM0, DM1, …, DM(B-1)) are accessible directly by their
indices (e.g. „store the value from R0 into DM3” or „load the value from
DM5 into R1”),

 the remaining cells (DM(B), DM(B+1), …, DM(S-1)) constitute the memory
buffer for the stack – a list of values which can be pushed (added at the
end) or popped (removed from the end), rather than accessed directly by
their  index.                                               
At every moment, the stack (if not empty) extends from the memory cell
DM(B) up to its  head which is located in the cell DM(SHR), i.e. the cell



indexed by the current value of SHR (Stack Head Register).                       

          
An example sequence of actions on the stack (dark orange) 

within the second (light orange) part of the data memory, for S = 30 and B = 20.
The bold numbers are the values stored in the data memory cells

The initial  value of  SHR is  B-1,  which means that  the stack  is  empty.
Pushing the first element would increase SHR to B, and store the value at
DM(B). Pushing the next element would increase SHR to  B+1, and store
the value at DM(B+1), and so on.                                                            
Popping works  conversely:  reads  the  value  of  DM(SHR),  and  then
decreases SHR by one.

The memory split described above makes TC partly a stack machine. This
functionality  will  be  important  for  procedural  programming;  see  the
final section of this document.

Instruction memory

The  instruction  memory  (IM)  consists  of  T  cells,  IM0,  IM1,  …,  IM(T-1),  each
representing  one  instruction together  with  any  its  arguments.  To  have  TC
execute  a  program,  the  consecutive  instructions  of  that  program  should  be
stored in IM0, IM1, and so on.



Each instruction consists of:

 a type symbol, indicating the type of instruction (e.g. „add two numbers”,
„move a value from one location to another”, etc.),

 optionally, up to three arguments specifying the details (e.g. which 
numbers should be added).

While in TCL instructions have a  symbolic representation (e.g. „ADD R0
R1 R2” stands for „add values from R0 and R1 and store the result in R2”),
the  instruction  memory  cells  contain  binary  representations of  such
instructions:

The structure of a binary representation of an instruction within the TC computer.

An IM cell is split to four blocks of bits, encoding the type symbol and arguments
(or null value when a corresponding argument is absent). Also, the whole cell can
be null, indicating that it is empty (there’s no instruction stored in it).

The length of an IM cell (in bits) is chosen so that each block can fit the necessary
information (instruction type, index of a register, index of a data memory cell etc.
- note that all of these are bounded by the constructional parameters). We will
not  dive  into  deep  details  here  as  they  are  invisible  from the  programmer’s
perspective.

Input-output system

The input-output system of the TC computer has the following functionality:

 input:  reading  values  from  the  standard  input  and  storing  them  in
registers or data memory;

 output: sending to the standard output values of registers, data memory
cells, as well as reporting when program execution has finished.

In particular, the input-output system converts all numeric values between
the internal binary and external decimal representation.

In  our  TCE  emulator,  the  standard  input  and  output  will  be  available
through the standard  command line console.  The emulator  will  also be
responsible for reading  all the constructional parameters and the code of
a program, which will be treated as loaded into the instruction memory of
the emulated TAK computer.



TC computer – computing model

Let us now describe in detail how the program specified by the user is loaded into
a TC computer and executed by it.

A program is a sequence of instructions. Each instruction occupies one cell of
the instruction memory,  so the total  number of instructions in the program is
limited by T, the size of instruction memory.

Loading the program

When TCE is asked to run a program consisting of  L instructions, it first checks
whether L ≤ T and whether all instructions are syntactically correct, throwing a
program loading error if necessary. If all is correct, TCE stores the instructions
into the first  L cells of instruction memory, and sets the remaining cells to be
empty.

Executing the program

At the beginning of executing any TC program, all the registers are set to zero,
except for SHR (Stack Head Register), whose value is set to B-1 (indicating that
the stack is empty). In particular, IAR (Instruction Address Register) is set to 0,
which guarantees that executing the program will start from its first instruction.

Then, the following actions are taken in a loop, until the execution finishes:

 the current instruction (indexed by the value of  IAR)  is  loaded into the
execution unit (EU),

 the EU performs the computations  related to  the instruction,  optionally
using the data memory block,

 the  control  unit  (CU)  determines  the  value  of  return  code  from  the
instruction and stores it in the IRCR register; value 0 denotes successful
execution, a positive value denotes an error; in the latter case executing
the program is halted,

 the value of IAR is incremented by one.

Successful termination of a program

Assuming that all instructions in the program are syntactically correct and do not
cause  any  execution  error,  executing  the  program can  be  terminated  in  two
situations:

 IAR ≥ L – execution has just reached an empty memory cell,
 IAR = T (possible when L = T) – we have just executed the last instruction

of the program, stored in IM(T – 1), which was not a jump instruction. In
this case, there are no further instructions to be executed.

Execution errors



An execution error occurs whenever an attempt to execute a (syntactically valid)
instruction leads to an action which would be incorrect  algorithmically (e.g.
division by 0) or due to hardware limitations (e.g. accessing memory cell with
index out of bounds; arithmetic overflow). In each of these cases, the control unit
halts program execution, and – through the input-output system – passes the
values of IAR and IRCR to the outside environment. This lets the user know which
kind of error has occurred and which instruction has triggered it.

Introduction to the TCL language

We will now describe the basic rules of the  TAK Computer Language  (TCL)
which will be used to program the TC computer. TCL is an assembly language,
sticking to machine-level concepts but offering their symbolic representation, in a
fashion similar to existing assembly languages.

A  program is represented as a text input (provided in a file or directly from
terminal),  in  which  each  line  always  corresponds  to  one  instruction.  For
instance, the following program:

SET R0 1 // store value 1 in register R0
SET R1 13 // store value 13 in register R1
OUT R0 // print the value of R0 to the output

consists of three instructions, which will be stored correspondingly in IM0, IM1,
IM2.

The  instruction  structure is  simple:  it  always  starts  with  a  type  symbol,
followed by all the arguments. For programmer’s convenience (in particular, for
best compatibility with various conventions of existing assembly languages), we
introduce the following conventions:

 the language is case-insensitive,
 type symbol and arguments can be separated by any non-empty sequence

of whitespace characters (spaces, tabs) and commas,
 any  of  characters:  / # ; starts  a  comment  (ignored  portion  of  code)

spanning until the end of the current line.

To  summarize,  the  following  lines  of  code  are  all  valid,  and  mutually
equivalent:

ADD R1 R2 R3 // add values of R1 and R2; store result in R3
ADD R1, R2, R3 ; this does the same
add r1,r2,r3 # so does this

Addressing modes for instruction arguments
Before we list all the instruction types, let us discuss in general what kinds of
arguments are available in the language.



In  every  instruction,  every  argument  must  denote  a  value and/or refer  to  a
memory  cell.  In  TCL,  there  are  three  ways  to  do  this  (called  addressing
modes):

 immediate addressing – the argument is just a number (given in decimal
form) whose value should be used in the computation, for example:

SET R0 3 // store the value 3 in register R0

 direct addressing – the argument specifies a data memory cell, which 
should be either written to or read from. Examples:
IN DM0  // store the value read from input in cell DM0
OUT DM1 // print the value stored in cell DM1 to the output
Note that only the first B data memory cells (DM0, DM1, …, DM(B-1)) are 
directly accessible; the remaining cells serve as stack and an attempt to 
access them directly will result in a program loading error.

 register addressing – the argument specifies a register, which should be 
either written to or read from. Examples:
IN R0  // store the value read from input in register R0
OUT R1 // print the value stored in register R1 to the output

This list is simplified comparing to real-life assembly languages; for instance, the
Intel 8086 processors (introduced in 1978) supported 7 addressing modes. Our
choice of 3 basic addressing modes will be enough for our simple applications.

Note that a single instruction may combine  different addressing modes. On
the other hand, keep in mind that most instruction types place restrictions on
addressing modes of their arguments – for instance, the single argument of  IN
cannot use immediate addressing (indeed,  IN 15 would not make any sense).
The details for every instruction type will be described below.

Data types
TCL supports just two data types:

 Signed integers which can fit within one register (or memory cell). We
use the two’s complement convention (see Lecture 7). This means that,
given the K-bit cells, the range of numbers supported by the language is
from -2K-1 to 2K-1 – 1, inclusive. Whenever execution unit gets involved in an
arithmetic operation whose result would fall outside this range, the result
will  be  an  execution  error  of  arithmetic  overflow.  Also,  specifying
numeric constants outside this range gives an error.

 Boolean values: true or false. Since registers and memory cells have  K
bits, we need to clarify how Boolean values will be represented in them.
Our convention is to replicate the same bit  K times, where 1 stands for
truth, and 0 for false (see the picture).



Representation of boolean values in a 16-bit register.

TCL instruction types
We will now present all the instruction types available in TCL. For each of them,
we will describe its syntax and semantics, including:

 the number of arguments and their allowed addressing modes
 the possible return codes – values of IRCR register after executing the 

instruction,
 [OPTIONAL] number of clock cycles spent on executing the instruction -

this won’t play any direct role in the programming tasks, but will be useful
for those who’d like to fight for better efficiency.

System instructions
These instructions allow global manipulations on the memory state.

CLEAR_REG

Syntax: CLEAR_REG

Semantics: Clears all regular registers in the machine (R0, R1, …, R(N-1)), 
setting their value to 0.

Addressing: N/A (no arguments)



Return code: 0 – success

Clock cycles: N (the number of regular registers)

CLEAR_DATA_MEM

Syntax: CLEAR_DATA_MEM

Semantics: Clears all memory cells in the machine (DM0, DM1, …, DM(S-1)), 
setting their value to 0.

Addressing: N/A (no arguments)

Return code: 0 – success

Clock cycles: 5·S (where S = the number of data memory cells)

DUMP_REG

Syntax: DUMP_REG

Semantics: Prints consecutively values of all registers (R0, R1, …, R(N-1)) to 
the output.

Addressing: N/A (no arguments)

Return code: 0 – success

Clock cycles: 51·N (where N = the number of registers)

DUMP_DATA_MEM

Syntax: DUMP_DATA_MEM

Semantics: Prints consecutively values of all data memory cells (DM0, DM1, 
…, DM(S-1)) to the output.

Addressing: N/A (no arguments)

Return code: 0 – success

Clock cycles: 51·S (where S = the number of data memory cells)

Data transmission

IN

Syntax: IN ARG1

Semantics: Reads a number (specified in decimal form) from the input and
stores its value in the register/memory cell specified by ARG1.



Addressing: register/direct

Return code: 0 – success

1 – the provided string did not represent an integer

2 – overflow: the given integer did not fit within K bits

3 – empty input

Clock cycles: 51 – in register addressing mode

55 – in direct addressing mode

Examples: IN R1 – reads a number and stores it in R1

IN DM2 – reads a number and stores it in DM2

OUT

Syntax: OUT ARG1

Semantics: Prints  (in  the  decimal  form)  the  value  stored  in  ARG1  to  the
output.

Addressing: register/direct

Return code: 0 – success

Clock cycles: 51 – in register addressing mode

55 – in direct addressing mode

Examples: OUT R1 – prints the value of R1

OUT DM2 – prints the value of DM2

MOV

Syntax: MOV ARG1 ARG2

Semantics: Copies the value stored in register/memory cell specified by ARG1
to the register/cell specified by ARG2.

Addressing: register/direct

Return code: 0 – success

Clock cycles: 2 – in register-register addressing mode

6 – in register-direct or direct-register addressing mode

10 – in direct-direct addressing mode

Example: MOV R1 DM2 – copies the value from R1 into DM2

SET



Syntax: SET ARG1 ARG2

Semantics: Sets the new value of register/memory cell specified by ARG1 to
be the number specified by ARG2.

Addressing: ARG1: register/direct

ARG2: immediate

Return code: 0 – success

Clock cycles: 11 – in register addressing mode

16 – in direct addressing mode

Example: SET DM2 -15 – stores the number -15 in memory cell DM2

PUSH

Syntax: PUSH ARG1

Semantics: Pushes the value of register/memory cell specified by ARG1 to the
top of the stack (growing the stack by 1). This means three steps:

(i) increase the value of SHR by one,

(ii) read the value of ARG1,

(ii) store that value in the new stack head, i.e. the cell DM(SHR).

Addressing: register/direct

Return code: 0 – success

1 – stack overflow error (SHR = S) – the stack has filled the whole 
available memory buffer; no room for the new value 

Clock cycles: 8 – in register addressing mode

12 – in direct addressing mode

Example: PUSH R1 – pushes the value stored in R1 to the head of the stack

POP

Syntax: PUSH ARG1

Semantics: Pops the value off the current head of the stack (decreasing the
stack  size  by  1),  and  stores  it  in  the  register/memory  cell
specified by ARG1. This means three steps:

(i) read the current stack head, i.e. the value of DM(SHR),

(ii) store that value in the register/memory cell specified by ARG1,

(iii) decrease the value of SHR by one.

Addressing: register/direct



Return code: 0 – success

1 – empty stack (SHR = B-1) – no value to be popped from it

Clock cycles: 8 – in register addressing mode

12 – in direct addressing mode

Example: POP DM3 – pops the value from the head of the stack to DM3

Logic operations

SETT / SETF

Syntax: SETT ARG1
SETF ARG1

Semantics: Stores the Boolean truth (11...1)  /  false (00...0)  in the register
ARG1.

Addressing: register

Return code: 0 – success

Clock cycles: 1

NOT

Syntax: NOT ARG1 ARG2

Semantics: Computes the negation of the Boolean value from register ARG1;
stores it in the register ARG2

Addressing: register

Return code: 0 – success

1 – the value of register ARG1 did not represent a Boolean value

Clock cycles: 1

AND / OR / XOR / NAND / NOR

Syntax: AND  ARG1 ARG2 ARG3
OR   ARG1 ARG2 ARG3
XOR  ARG1 ARG2 ARG3
NAND ARG1 ARG2 ARG3
NOR  ARG1 ARG2 ARG3

Semantics: Performs the specified logic operation on the Boolean values from
registers ARG1 and ARG2; stores the result in the register ARG3.
For explanation of the five operations (AND / OR / XOR / NAND /
NOR), see Lecture 6.



Addressing: register

Return code: 0 – success

1 – register ARG1 or ARG2 did not contain a Boolean value

Clock cycles: 2

Example: AND R1 R3 R0 – stores the conjuction of the Boolean values from 
R1 and R3 into R0

Arithmetic operations

NEG

Syntax: NEG ARG1 ARG2

Semantics: Computes  the  negation  (e.g.  5  →  -5)  of  the  value  of  register
ARG1, and stores it in ARG2. (The arithmetic analogue of NOT)

Addressing: register

Return code: 0 – success

1 – arithmetic overflow: the result does not fit in a register

Clock cycles: 1

ABS

Syntax: ABS ARG1 ARG2

Semantics: Computes the absolute value (e.g. 5 → 5, -5 → 5) of the value of
register ARG1, and stores it in ARG2.

Addressing: register

Return code: 0 – success

1 – arithmetic overflow: the result does not fit in a register

Clock cycles: 1

ADD / SUB / MUL / DIV / MOD

Syntax: ADD ARG1 ARG2 ARG3
SUB ARG1 ARG2 ARG3
MUL ARG1 ARG2 ARG3
DIV ARG1 ARG2 ARG3
MOD ARG1 ARG2 ARG3



Semantics: Performs  an  arithmetic  operation  (ADDition  /  SUBtraction  /
MULtiplication  /  integer  DIVision  /  MODulo)  on  the  numbers
stored in registers ARG1 and ARG2, and stores the result in ARG3.

For  DIV /  MOD involving negative numbers,  we follow the C99
convention: a MOD b has same sign as a (see „Note” below).

Addressing: register

Return code: 0 – success

1 – arithmetic overflow: the result does not fit in a register

2 – division by 0 (for DIV / MOD operations)

Clock cycles: 4 / 4 / 10 / 30 / 30 – for ADD / SUB / MUL / DIV / MOD

Note

In the leading languages,  there are  two  competing  standards of
defining how DIV and MOD should behave for negative numbers:

To help understanding, let’s note that both conventions adhere to the
main principle relating DIV and MOD operations to each other:

a = (a DIV b) · b + (a MOD b).

Now, in the floor convention, the division result is rounded down,
or equivalently, the remainder (MOD) has always the sign of b.

In the truncate (C99) convention, on the other hand, the result is
rounded towards zero (so down if it’s positive, up if it’s negative),
or equivalently, the remainder has the sign of a.

While the floor convention is more compatible with standard math (at
least for  b > 0),  in TCL we’ll  follow the  C99 convention,  as the
leading one particularly for lower-level languages.



INC / DEC

Syntax: INC ARG1 ARG2
DEC ARG1 ARG2

Semantics: Increases / decreases the value stored in register ARG1 by the
number represented by ARG2

Addressing: ARG1 – register
ARG2 – immediate

Return code: 0 – success

1 – arithmetic overflow: the result does not fit in a register

Clock cycles: 14

Example: INC R1 12 – increases the number stored in R1 by 12.

Arithmetic relations

CMP(EQ / NEQ / LT / GT / LE / GE)

Syntax: CMPEQ  ARG1 ARG2 ARG3
CMPNEQ ARG1 ARG2 ARG3
CMPLT  ARG1 ARG2 ARG3
CMPGT  ARG1 ARG2 ARG3
CMPLE  ARG1 ARG2 ARG3
CMPGE  ARG1 ARG2 ARG3

Semantics: Compares  the  numbers  stored  in  registers  ARG1  and  ARG2;
stores in ARG3 whether the value from ARG1 is EQual / Not EQual
/ Less Than / Greater Than / Less than or Equal / Greater than or
Equal the value from ARG2.

Addressing: register

Return code: 0 – success

Clock cycles: 3

Example: CMPLT R1 R5 R2 – stores true (as Boolean value) in R2 if  the
value from R1 is  less than the value from R5; stores false (as
Boolean value) in R2 otherwise

Flow control instructions

JMP

Syntax: JMP ARG1



Semantics: Makes a jump to the instruction indexed by the value of ARG1 –
the next instruction to be executed will be IM(ARG1).

Internally, this is achieved by setting IAR to the value of ARG1
minus one – as if the current instruction was the one preceding
IM(ARG1). Since IAR is increased by one at the end of executing
every instruction, this results in executing IM(ARG1) in the next
turn.

Addressing: immediate/register

Return code: 0 – success

1 – wrong jump target (invalid instruction memory cell index)

Clock cycles: 4

Example: JMP 1 – jumps so that the next instruction to be executed is IM1,
i.e. the second instruction in the program (reminder – indexing
starts from zero!)

JMPT / JMPF

Syntax: JMPT ARG1 ARG2
JMPF ARG1 ARG2

Semantics: Makes  a  conditional  jump to  the  instruction  indexed  by  the
value of ARG1 – the jump occurs if the value of ARG2 is  True /
False; nothing happens otherwise.

Addressing: ARG1 – immediate/register
ARG2 – register

Return code: 0 – success

1 – wrong jump target (invalid instruction memory cell index)

2 – the value of register ARG2 did not represent a Boolean value

Clock cycles: 6

Example: JMPF 7 R2 – jumps to IM7 if the value of R2 is a Boolean false; no
action  if  the  value  of  R2  is  a  Boolean  truth;  execution  error
otherwise

JMP(EQ / NEQ / LT / GT / LE / GE)

Syntax: JMPEQ  ARG1 ARG2 ARG3
JMPNEQ ARG1 ARG2 ARG3
JMPLT  ARG1 ARG2 ARG3
JMPGT  ARG1 ARG2 ARG3
JMPLE  ARG1 ARG2 ARG3
JMPGE  ARG1 ARG2 ARG3



Semantics: Makes a conditional jump to the instruction indexed by the value
of ARG1, under the condition that the value of ARG2 is  EQual /
Not  EQual  /  Less  Than /  Greater  Than /  Less than or  Equal  /
Greater than or Equal the value from ARG3.

Addressing: ARG1 – immediate/register

ARG2, ARG3 – register

Return code: 0 – success

1 – wrong jump target (invalid instruction memory cell index)

Clock cycles: 6 / 6 / 7 / 7 / 9 / 9 – for JMP(EQ / NEQ / LT / GT / LE / GE)

Example: JMPGE 12 R5 R2 – jumps to IM12 if the value of R5 is greater or
equal than the value of R2; no action otherwise

SKIP

Syntax: SKIP

Semantics: Increases IAR by one. 

Effect:  skips the execution of the following instruction: if IM(x) is
SKIP, then executing it results in a jump to IM(x + 2).

Addressing: N / A – no arguments

Return code: 0 – success

1 – wrong jump target (invalid instruction memory cell index)

Clock cycles: 4

NOP

Syntax: NOP
<empty line>

Semantics: No action – this instruction does nothing.

Yet, it is a non-trivial instruction. As a result, when IM(IAR) = NOP,
the  execution  unit  will  do  nothing,  but  the  control  unit  will
continue executing the program, proceeding to IM(IAR + 1). On
the other hand, when IM(IAR) has zero value, program execution
is immediately terminated.

Syntactically, NOP can be represented either with NOP or with an
empty line. As a result, your TCL program may contain empty
lines (for readability purposes) which will be interpreted as NOP
instructions, and hence will not halt executing your program :)

Addressing: N / A – no arguments

Return code: 0 – success



Clock cycles: 1

Bit-wise arithmetics [OPTIONAL]

Bit-wise arithmetics mean applying logical operators to sequences of bits, in a
bit-wise fashion. For example, bit-wise AND on sequences 1100 and 1010 gives
1000 (see the picture).

The principle of bit-wise operations. („RAND” denotes here „bit-wise AND”).

A related concept is the bit shift of a binary sequence. The left shift involves
erasing the left-most bit of a sequence (hence all the following bits move by one
place to the left), and appending a zero at the end. Arithmetically, the result is
multiplication by 2, though modulo 2K.

The  right shift, conversely, involves erasing the right-most bit (so moving all
preceding one place to the right), and … What should we prepend on the start?
One intuitive answer is „a zero, just like for the left shift” - that convention is
called the logical right shift. On the other hand, if we prefer an operation with a
good arithmetic  intepretation  (namely,  integer  division  by  2),  then,  to  obtain
good results for negative numbers, we need the prepended bit to be a copy of
the original left-most bit. This variant is called the arithmetic right shift.

These operations are not useful in most intuitive contexts, and do not increase
the expressive power of the language. Yet, they gained much popularity in low-
level programming due to the simplicity of their hardware implementation, which
allows many processors to perform these much faster than the typical arithmetic
operations. (For example, on some processors, the most efficient way to store 0
in a register is to tell the processor to replace this value with the bit-wise xor of it
with itself).

RNOT

Syntax: RNOT ARG1 ARG2



Semantics: Computes the bit-wise negation (e.g. 3 = 0...011 → 1...100 = -4)
of the value in register ARG1 and stores it in register ARG2.

In  the  2’s  complement  convention,  this  operation  always
transforms an integer value x into -1 – x.

Addressing: register

Return code: 0 – success

Clock cycles: 1

RAND / ROR / RXOR / RNAND / RNOR

Syntax: RAND  ARG1 ARG2 ARG3
ROR   ARG1 ARG2 ARG3
RXOR  ARG1 ARG2 ARG3
RNAND ARG1 ARG2 ARG3
RNOR  ARG1 ARG2 ARG3

Semantics: Performs a bit-wise logic  operation (AND /  OR /  XOR /  NAND /
NOR) on the values of registers ARG1 and ARG2, and stores the
result in the register ARG3.

Addressing: register

Return code: 0 – success

Clock cycles: 2

RSL / ASL / RSR / ASR

Syntax: RSL ARG1
ASL ARG1
RSR ARG1
ASR ARG1

Semantics: Performs a bit shift (Left or Right) of the value of register ARG1,
storing the result back in ARG1.

RSL and ASL both perform the (unambiguous) left shift.

RSR performs the logic variant of the right shift, while ASR the
arithmetic variant.

Addressing: register

Return code: 0 – success

Clock cycles: 1



Procedural programming

The elements of  TCL listed above are  powerful  enough to realize  most  basic
aspects of imperative programming, as known from popular languages like Java
or C++. For instance, proper combinations of conditional jumps (JPMT etc.) can
be used to build an  equivalent of „if-else” block or „while” loop (and then –
with some arithmetic – also the „for” loop).

However,  the  story  becomes  more  tricky  when  it  comes  to  procedures (or
functions), which we understand as pieces of code which you can call and then
return from. How to do this in TCL?

A simple print procedure
Let’s start from a simple example, and try to code it with a simple machinery –
just jumps.

For the start, let’s say we want to code a simple procedure which prints out its
single argument a. We want to call it two times: for a = 10 and a = 9. Since the
core of data flow in TC is registers, we’ll adopt the convention that arguments are
passed through initial registers – in this case, through R0.

For better orientation in the code, we provide line numbers on the left – keep in
mind though that they are not part of the actual code.

0 # start of the program

1 SET R0 10 # set argument value

2 JMP 9 # call „print”

3

4 SET R0 9 # set argument value again

5 JMP 9 # call „print” again

6

7 JMP 11 # halt program execution (jump to empty instruction)

8

9 OUT R0 # „print” STARTS HERE

10 JMP ??? # yeah... where do we jump to return???

This  „almost” works. The first call of our print procedure (i.e. jump to line 9)
happens in line 2, so at the end of executing the procedure (in line 10) we’d like
to jump back to line 3 – just after the calling point. But the next time, we call the
procedure from line 5, and we want the returning jump in line 10 to target line 6!

How to do this? The simple answer is:  store the calling location based on IAR,
and use this knowledge at return time. Below, we use R1 for that storage:

0 # start of the program

1 SET R0 10 # set argument value

2 MOV IAR R1 # store where we are

3 JMP 11 # call „print”

4



5 SET R0 9 # set argument value again

6 MOV IAR R1 # store where we are

7 JMP 11 # call „print” again

8

9 JMP 15 # halt program execution (jump to empty instruction)

10

11 OUT R0 # „print” STARTS HERE

12 INC R1 2 # compute the instruction to which we want to return

13 JMP R1 # return!

Here’s  the  trick:  before  each  call  of  „print”,  we  store  the  current  IAR  value
(number of line we’re at) in R1. At the end of the „print” procedure, we’d like to
return to the next line after the calling jump, that is, two lines after the line in
which we saved IAR (assuming that we wisely always save  right before the
calling jump). For this, it’s sufficient to increase R1 by 2, and do „JMP R1”.

The more general picture
As  we  saw  above,  the  store-caller-place-in-register  trick  works  for  the  above
simplistic example. But what if we’d like a procedure to call another procedure?

They can’t both use R1 for keeping the return instruction number, as one would
destroy the value saved by the other one. Should the other one use R2? That
would  work  for  a  simple  picture,  but  not  if  we  want  to  have  recursion (a
procedure calling directly or indirectly itself).

The  general  solution  here  is  to  use  stack  for  accumulating  and  disposing
respective return locations, correspondingly to the call stack of invocations of all
our functions. In each call, we push the current IAR to the stack; in each return,
we pop the last-pushed value, increase it by 2, and return there. That’s simple,
and has an additional advantage that no registers are permanently occupied for
the  purpose  of  return  address  tracking.  (Well,  some  register  is  still  needed
temporarily, for just the „increase by 2” part).

To  take  an  example,  we  will  write  a  „print2”  procedure  which,  given  a  non-
negative number n, prints out the numbers n, n-1, …, 1, 0. We will implement it
recursively:  „call  print(n);  then,  if  n >  0,  call  print2(n-1)”.  Here’s  the  code,
together with two sample calls, print2(10) and then print2(9):

0 # start of the program

1 SET R0 10 # set argument value

2 PUSH IAR # store (push to stack) where we are

3 JMP 16 # call „print2”

4

5 SET R0 9 # set argument value again

6 PUSH IAR # store (push to stack) where we are

7 JMP 16 # call „print2” again

8

9 JMP 30 # halt program execution (jump to empty instruction)

10

11 OUT R0 # „print” STARTS HERE



12 POP R1 # get (pop from stack) the last stored IAR value

13 INC R1 2 # compute the instruction to which we want to return

14 JMP R1 # return!

15

16   # „print2” STARTS HERE

17 PUSH IAR # store (push to stack) where we are

18 JMP 11 # call „print” for „n”

19 SET R1 0

20 JMPEQ 24 R0 R1 # skip recursive part if „n” equals 0

21 DEC R0 1 # decrease „n” by one

22 PUSH IAR # store (push to stack) where we are

23 JMP 16 # call „print2” for „n-1”

24 # RETURNING FROM „print2” STARTS HERE

25 POP R1 # get (pop from stack) the last stored IAR value

26 INC R1 2 # compute the instruction to which we want to return

27 JMP R1 # return!

Yay,  this works! Pity though that we get the numbers printed in the reversed
order: n, n-1, …, 1, 0. Let’s make it increasing: 0, 1, …, n-1, n, by switching the
order of actions within „print2”: first  call print2(n-1) (if suitable), and only then
call print(n). It looks like only „print2” part needs changes, so let’s rewrite only
that:

16   # „print2” STARTS HERE

17 SET R1 0

18 JMPEQ 23 R0 R1 # skip recursive part if „n” equals 0

19 DEC R0 1 # decrease „n” by one

20 PUSH IAR # store (push to stack) where we are

21 JMP 16 # call „print2” for „n-1”

22 INC R0 1 # get the value of „n” back – SUBOPTIMAL!

23 PUSH IAR # store (push to stack) where we are

24 JMP 11 # call „print” for „n”

25 # RETURNING FROM „print2” STARTS HERE

26 POP R1 # get (pop from stack) the last stored IAR value

27 INC R1 2 # compute the instruction to which we want to return

28 JMP R1 # return!

OK, so the blue lines went down, as expected, but why did the red line appear?
This is to  restore the desired value of a „local variable” - in this case, R0 –
which had been earlier decreased by one. Well, this trick worked luckily in our
simple case, but generally, it often happens that procedures compute some local
values to be used after some sub-routine calls which inrecoverably mess up the
state of memory – quite possibly all the memory that we could use as a backup.
(Think of recursion again! If you plan to backup R0 in, say, DM237, then your
recursive sub-call of the same function will very likely mess up the very same



DM237!) Therefore, the  safe general solution is just what we did previously
with the return address: save locally used values on the stack. Like this:

16   # „print2” STARTS HERE

17 SET R1 0

18 JMPEQ 24 R0 R1 # skip recursive part if „n” equals 0

19 PUSH R0 # save the original „n” for later

20 DEC R0 1 # decrease „n” by one

21 PUSH IAR # store (push to stack) where we are

22 JMP 15 # call „print2” for „n-1”

23 POP R0 # restore the original „n”

24 PUSH IAR # store (push to stack) where we are

25 JMP 11 # call „print” for „n”

26 # RETURNING FROM „print2” STARTS HERE

27 POP R1 # get (pop from stack) the last stored IAR value

28 INC R1 2 # compute the instruction to which we want to return

29 JMP R1 # return!

This  approach  –  when  followed  correctly  –  allows  expressing  arbitrarily
complex recursive  computation  in  an  assembly-level  language.  The  most
important thing to watch for here is not to mess the order in which local values
and return addresses land on the stack. For instance, in the above code, it is
crucial that line 18 precedes line 20: since the value of n will be popped from the
stack (line 22) after returning from „print2” sub-call (line 21), it must be pushed
to the stack before the return address. Otherwise the code would crash.


	TC computer – architecture model
	TC computer – architecture details
	Processor
	Data memory
	Instruction memory
	Input-output system

	TC computer – computing model
	Loading the program
	Executing the program
	Successful termination of a program
	Execution errors

	Introduction to the TCL language
	Addressing modes for instruction arguments
	Data types

	TCL instruction types
	System instructions
	Data transmission
	Logic operations
	Arithmetic operations
	Arithmetic relations
	Flow control instructions
	Bit-wise arithmetics [OPTIONAL]

	Procedural programming
	A simple print procedure
	The more general picture


