
1

COMP1610
(2020/21)

Programming Enterprise
Components

Header ID

Contribution
100% of module

Module Leader
Dr Mahtab Hossain

 25703 Deadline Date
Friday 16/07/2021

This coursework should take an average student who is up-to-date with tutorial work
approximately 50 hours

Feedback and grades are normally made available within 15 working days of the coursework

deadline

Learning Outcomes:

On completing this module successfully, you will be able to:
1. Design, develop and deploy reliable and secure enterprise applications using a variety of
Jakarta EE technologies.
2. Critically evaluate and compare enterprise features in Jakarta EE and determine their
applicability in the creation of enterprise applications.
3. Demonstrate in-depth knowledge and understanding of techniques and technologies for the
development of distributed systems, including the use of service-oriented architectures.

Plagiarism is presenting somebody else's work as your own. It includes:
copying information directly from the Web or books without referencing the
material; submitting joint coursework as an individual effort; copying another
student's coursework; stealing coursework from another student and
submitting it as your own work. Suspected plagiarism will be investigated and
if found to have occurred will be dealt with according to the procedures set
down by the University. Please see your student handbook for further details
of what is / isn't plagiarism.

All material copied or amended from any source (e.g. internet, books) must be
referenced correctly according to the reference style you are using.

Your work will be submitted for electronic plagiarism checking. Any attempt to
bypass our plagiarism detection systems will be treated as a severe Assessment
Offence.

2

Coursework Submission Requirements

• An electronic copy of your work for this coursework must be fully uploaded by 23:30
pm on the Deadline Date of Friday 16/07/2021 using the link on the coursework
Moodle page for COMP1610.

• For this coursework you must submit a single Acrobat PDF document.
In general, any text in the document must not be an image (i.e., must not be scanned)
and would normally be generated from other documents (e.g., MS Office using "Save
As .. PDF").

• For this coursework you must also upload a single ZIP file containing supporting
evidence (e.g., code). The database with data should be exported as a single SQL
file, and submitted with the coursework as well.

• There are limits on the file size (current values are on Moodle).

• Make sure that any files you upload are virus-free and not protected by a password or
corrupted otherwise they will be treated as null submissions.

• Your work will be marked online and comments on your work and a provisional grade
will be available from the Coursework page on Moodle. A news item will be posted
when the comments are available, and also when the grade is available in
BannerWeb.

• You must NOT submit a paper copy of this coursework, or include the Banner header
sheet.

• All coursework must be submitted as above. Under no circumstances can they be
accepted by academic staff

The University website has details of the current Coursework Regulations, including details of
penalties for late submission, procedures for Extenuating Circumstances, and penalties for
Assessment Offences. See http://www2.gre.ac.uk/current-students/regs

http://www2.gre.ac.uk/current-students/regs

3

A Web-based Wallet system using Jakarta EE
technologies.

This is an individual piece of coursework worth of 100%.

Coursework Specification

An international money transfer company has approached you to build an application for them
to manage Web-based wallet accounts for their customers. They emphasised on the
reliability, scalability and easy extensibility aspects (if new features need to be added or
existing ones might be modified) of the developed application.

The functional requirements of the system are outlined below in terms of operations [activities
that the customer can perform on their accounts], and views [visualisation aspects]:

i) A customer can open account in three different currencies, e.g., GBP, USD and EUR.
However, the developed application should keep provisions to add accounts for other
currencies [e.g., INR, NGN, etc.] in future as well to be relevant in the face of expanding their
business in other continents. In other words, the developed code should be easily extensible
if needed to incorporate more account types.

Keep the attributes of the currency accounts as compact as possible. For example, an
account identifier, account name, balance may be necessary attributes for each account.
Please add additional attributes only if they are required for addressing the functionalities
which are mentioned below. Follow similar principle for the customer attributes too (name,
passport/id, address, phone number, email, and his/her login credentials might be necessary).

ii) A customer should be able to transfer or move his/her money from one currency account to
another via the application besides the usual deposit, withdraw and view balance operations.
You should also keep provisions to pay from a customer’s account to an external account
[payee ‘wallet’ account].

iii) A few views are primarily required: 1) a summarised view of number of accounts held by a
single customer and the balance of each account in its own currency, and 2) A detailed view
of his/her particular account with transactions for the current month,

iv) A user interface (UI) addressing all the above functionalities. It should be a Web
application using Jakarta EE, which offers 1) customer log-in and 2) the execution of the
above functionalities that are mentioned in i), ii) and iii) through the UI. The implementation
should use entity classes and java beans for back-end functionality and JSP/JSF for the front-
end (including HTML/CSS incorporation if it is required).

The whole coursework is divided into six tasks which you are required to carry out. The tasks
are described in detail in the following. Please read and follow the instructions carefully. Task
2 should be attempted only after completing Task 1.

Task 1: 35 marks
A complete working system addressing the functionalities required thus far. Remember, there
are many provisions to utilise object-oriented (OO) design and programming for this case
study. Make sure you outline them in your report – see Section 3 of Task 6 for more
information.

You are free to draw any valid assumption that are not in conflict with the system’s functional
requirements. For example, the customers may already be loaded inside the
system/database “offline”. There is no need for a registration system for customers in this
coursework. You may initialize the data in your database using an SQL script (or equivalent)
so that it has some initial data in order to fully demonstrate the functionality that you have
implemented. You can use any relational database management system that you prefer (e.g.,

farkh
Подсветка

farkh
Подсветка

farkh
Подсветка

farkh
Подсветка

farkh
Подсветка

farkh
Подсветка

farkh
Подсветка

4

JavaDB, MySQL, etc.). Make sure the database is normalised with primary/foreign key
constraints.

You can assume a customer only need a login ID and password to access the system that
you have implemented. In other words, your application’s first page or window should be a
login screen requiring only the login ID and password. You SHOULD have a default pre-
existing account created [log ID: ha07, password: ha07] which will be used by your tutor for
login while marking.

Task 2: 10 marks
Suppose a new type of payment method (e.g., recurring monthly payment on a specific date)
needs to be added on top of the existing ones (withdraw/deposit/transfer) as discussed in
functionality (ii) [Page 3]. Also, achieve the task of adding one more currency account (INR)
for customers.

Remember these tasks will only be attempted after you finish Task 1 – not at the same time.
As a result, you will be able to identify and discuss the pros and cons of integrating this new
type of payment method (and account type) to the already existing system which we are
looking for here.

In your documentation (Section 2 of Task 6), please address the following under this task:
1) A list of files that you needed to change to incorporate
2) Screenshot of the code segments which were added or modified to achieve this.
3) A discussion of pros and cons of your followed approach. Reflect if there could have been
any better approach. If yes, how?

Task 3: 10 marks
Incorporate ORM Frameworks using a Java Persistence API (e.g., Hibernate) inside your
application. You can adopt this from the beginning in Task 1 (might be easier) or can adopt it
even after completing the above tasks.

Task 4: 20 marks
Create a Web Service (SOAP or REST) which exposes this application’s functionality to be
consumed by other applications. The Web service will accept a date from a customer and his
currency account detail and will return that day’s number of transactions (+list of transactions)
for that account.

Subsequently, create a small Java application [e.g., desktop client] that will retrieve the
transactions of a given day from the server. For example, if a customer wants to retrieve the
transactions of 1st January, 2021 of his/her particular currency account, the date (parameter)
will be included inside the request together with the currency account details from this client.
The reply from the server will consist of the number of transactions + the list of transactions
on that day for that account. Keep your client application as simple as possible [any type of
simple UI is accepted for this application – Graphical UI is not required but you are free to
build one if you prefer]. Note that, you may also need to authorise this application with the
server [customer’s login credentials] to retrieve the transaction of his/her account on that day.

Task 5: 10 marks
The above functionalities are the core requirements of the application. Additionally, there is an
opportunity if you want to demonstrate additional skillset. You can integrate any relevant
additional features (i.e., functionalities) making use of Jakarta EE technologies for this task.
Furthermore, if you can containerise the whole application using Jakarta EE, GitHub, Docker
etc. (or even hosted from Cloud) to make it platform independent, that can enhance your
development skills overall. This is just only an indication of the additional feature [not
mandatory] – you are of course free to choose any feature here as long as they are Jakarta
EE development related tools/techniques.

Task 6: 15 marks
Prepare a final report which should contain the following sections:
Section 1: A concise table containing a checklist of the tasks that you have been able to
implement. Please refer to the task list d discussed above. An example table may look like:

5

Task Implementation Summary

1 Implemented. Only one view (summary of accounts) is addressed though.

2 Implemented but the new currency account (INR) type could not be
integrated with the existing system.

3 Fully implemented.

4 Implemented but only the server side (no client application)

5 No additional feature/functionality was implemented.

Section 2: Screenshots demonstrating each of the tasks that you have implemented. Create
separate sub-sections for each task and give captions and/or annotations for the screenshots
to explain which functionalities of the task are being demonstrated. Do not forget to address
the specific documentation requirements mentioned for Task 2 in this part.

Section 3: Critically reflect (maximum: 500 words) on your experience of using the various
design and coding techniques that you may have adopted in the context of building this
system, especially:
1) If you have utilised any of the four pillars of OOP. Identify where and why [i.e., benefits]?
2) The relevant Jakarta EE technologies adopted and their relevance (or benefits) with
respect to the coursework.

Final Deliverables

You should upload your report as a single PDF file under the specified submission system. In
addition, you must upload your code as a zip file, and an SQL file with the existing database
details. In general, three files for your submission – ONE PDF report and ONE ZIP file for
code and ONE SQL file for database details. More details are given below.

i) A PDF document submitted by the due date containing the following sections IN THE
ORDER given below. Do not include any other information. Do not include all your source
code inside the report.

A) A cover page.
B) A demonstration video link (maximum duration: 10 minutes).
C) Section 1 of Task 6 (please read Task 6 description above).
D) Section 2 of Task 6 (please read Task 6 description above).
E) Section 3 of Task 6 (please read Task 6 description above).
F) A reference list (if applicable).
G) README section in the end explaining how your prototype should be run with clear

instructions (you can just copy the README file’s content here which is a
requirement for the ZIP file below).

ii) A ZIP file submitted containing the code satisfying the following requirements:

• There should be a README file to explain how the prototype should be run.

• An already created account as [login ID: ha07, password: ha07] for easy login to
the developed system.

iii) A DEMO [recording] file: MP4 file or any common video extension files

• You also need to upload a brief recording [maximum duration: 10 minutes] showing
the achieved functionalities. Make sure you demonstrate all your achieved tasks’
functionalities as mentioned above.

6

Grading Criteria

Distinction (>= 70%)
Well-developed work that satisfies the coursework requirements in design and
implementation to a high standard. Able to demonstrate detailed critical understanding of the
relevant concepts. A well written report and reflections on the tasks completed, and an
excellent prototype.

Merit (60 – 69%)
Work that addresses the requirements in design and implementation reasonably well. Shows
a good understanding of the relevant concepts with a good report and prototype.

Pass (50 – 59%)
Barely meets the coursework requirements in design and implementation. Demonstrates a
limited understanding of the relevant concepts with a report that fails to address many of the
design choices’ rationale, and a prototype that may be missing many of the functional
requirements.

Fail (<50%)
Demonstrating little, incorrect or no understanding of the relevant concepts. A superficial
report that fails to address most of the requirements both in design and implementation
perspective.

Assessment Criteria

You should engage with all the tasks (Task 1 – 6) of the coursework.

The report will be assessed for the following and the mark will be adjusted accordingly:

➢ Task 1:
o A working system using OO design principle, and programming. Addressed all

the functional requirements as specified inside the description of Task 1 above.
Integration of the required Java EE technologies mentioned inside Task 1
description (e.g., entity classes, java beans, JSP, etc.).
Quality of the code.

➢ Task 2:
o Successful integration of new type of payment method (recurring) and new

currency account creation (INR).
o The documentation of three different criteria discussed inside Task 2

description.
➢ Task 3:

o Successful integration of JPA. Demonstration of ORM understanding.
Quality of code.

➢ Task 4:
o Successful integration of Web service.

Both server and client-side implementation details are addressed.
➢ Task 5:

o Demonstration of Jakarta EE technologies understanding as part of the
integrated additional feature/functionality.

➢ Task 6:
o Documentation of the all required tasks.
o Overall critical reflection. If good OO principles have been followed?

Comparative discussion among various approaches that might be undertaken,

and the justification of your own adopted approach. The precision, correctness

and depth of the discussion will be evaluated.

