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This paper proposes a rankingmethod that considers the risk preferences of decisionmakers formultiple-attribute decision-making
problems in a multiple-interval type-2 trapezoidal fuzzy set environment. First, decision makers are classified according to the risk
preferences and a measurement method of risk preferences is proposed. Second, a risk preference decision matrix is obtained
and a new calculation formula of likelihood is defined. Finally, we obtain the ranking results of alternatives by calculating the
signed distance. Our example analysis shows that the proposed method is scientific and reasonable, and different risk preferences
influence the results of decision making. Comparison with previous methods shows that the proposed algorithm is more feasible;
it is applicable for decision making on both risk preferences and risk conservation.

1. Introduction

In an increasingly complex decision-making environment,
decision-making information has become more uncertain
and data with different attributes of options are difficult to
determine. In 1965, Zadeh [1] proposed the fuzzy set (type-1
fuzzy set, T1FS) theory that since then has been widely used
in multiple-attribute decision-making (MADM) problems.
However, the concept of fuzzy sets could not solve the
uncertainty of membership, so Zadeh [2] proposed type-2
fuzzy sets (T2FS). This type of fuzzy set is the generalization
of the T1FS, describing membership with fuzzy sets in the
interval of [0, 1]. Type-2 fuzzy number is portrayed by
the primary and secondary membership. Therefore, T2FS
has a stronger ability to deal with uncertain problems. To
determine the T2FS, we need to provide an appropriate fuzzy
set for membership of each element in the domain, which
is difficult. To simplify the problem, we have to impose
necessary restrictions on the form of T2FS. One approach
is to limit the value of 0 or 1 and obtain the interval-
value fuzzy sets (equivalent to intuitionistic fuzzy sets and
vague set [3]). Another approach is to set the membership
function to be the fuzzy number, namely, interval type-2

fuzzy set (IT2FS). IT2FS is a special case of T2FS. The value
of the secondary membership is set to 1 and the value of
the primary membership is set to a range, thus making it
describe uncertainty better than type-1 fuzzy number. IT2FS
has a greater application background, especially for MADM
problems that require experts to judge the satisfaction degree
of options with respect to different attributes. Human cog-
nition has complexity, uncertainty, and other characteristics
that cause difficulty for experts to provide a certain value and
allows them to provide only linguistic variables that can be
represented by fuzzy sets [4]. IT2FS has stronger language
explanation ability than ordinary fuzzy sets [5, 6]. Thus, the
MADM problem of IT2FS has become a highly valuable
research topic [7].

In 1979, Kahneman and Tversky [8] proposed the signif-
icant prospect theory in the field of economics on the basis
of a large number of experiments. Kahneman was awarded
the Nobel Prize for Economics in 2002 in recognition of his
important contribution to economics. Prospect theory states
that when decision makers face several decision-making
behaviors that have exactly the same amount of theoretical
economic benefit, most of the decision makers choose small-
risk decision behaviors. However, some decision makers
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still choose greater-risk decision behaviors. Thus, for uncer-
tain (especially IT2FS)multiattribute group decision-making
problems, different risk preferences directly influence the
decision results. Therefore, we need to classify decision
makers in accordance with their risk preference before enter-
ing the specific decision-making process. However, existing
studies generally do not consider the risk preference or
assume risk aversion, so no effective approach is available for
IT2FS multiattribute decision problems.

Considering this situation, we propose the risk prefer-
ence measurement method of IT2TrFS. First, we classify
decision makers on the basis of different risk preferences
and obtain a risk preference decision matrix for decision
makers. Second, we propose a new calculation method of
likelihood. Finally, we obtain the ranking results of options
by calculating the signed distance. This method takes into
account the risk preferences of decisionmakers and proposes
a specific decision method for IT2TrFS MADM problems
with attribute weights in the form of an exact value of
IT2TrFS.

2. Literature Review

At present, the theoretical study of interval type-2 fuzzy sets
(IT2FS) mainly focuses on pure mathematics. For example,
Chen [9] studied the nature and operation of IT2FS, Zheng
et al. [10] analyzed the similarity and acceptance of IT2FS,
Zarinbal et al. [11] proposed a clustering analysis model of
IT2FS with the method of relative entropy, Hwang et al. [12]
proposed a similarity measurement method of interval type-
2 fuzzy entropy, and Li et al. [13] proposed the uncertainty
measurement method of IT2FS. These theoretical studies
serve as a good theoretical foundation for the research
on IT2FS in the field of multiattribute decision making
(MADM).

However, to solve IT2FS MADM problems, we need to
address the translation problem between IT2FS and linguis-
tics. In recent years, research on the translation between
IT2FS and linguistics mainly includes three-level [14], four-
level [15], five-level [16], seven-level [17, 18], and nine-
level [19, 20] languages. Using these language-level systems,
decision makers can easily convert linguistic variables into
IT2FS to make decisions.

IT2FS mainly includes IT2IFS, interval type-2 triangular
fuzzy sets (IT2TFS), interval type-2 trapezoidal fuzzy sets
(IT2TrFS), and others. The IT2IFS domain is a discrete set
and can only roughly indicate whether an attribute is the
member of an option or not. Therefore, conducting research
based on IT2TFS and IT2TrFS is more meaningful than
research on IT2IFS. Previous studies on IT2TFS MADM are
as follows. Mokhtarian et al. [21] proposed IT2TFS MADM
of controlling risk. Using IT2TFS decision problems, Ashtiani
et al. [22] presented a feasible method to solve multiattribute
group decision-making problems with the improved TOPSIS
algorithm. Guo and Yin [23] proposed type-2 intuitionistic
fuzzy information MADM methods. Compared to IT2TrFS,
IT2TFS can describe the qualitative index [7, 24, 25] more
effectively. Studies on IT2TrFS have started only recently.

For example, Chen et al. [7, 24, 25] improved the clas-
sic QUALIFLEX, ELECTRE, and PROMETHEE algorithms
and proposed a specific MADM algorithm. Xu et al. [26]
presented a conflict measurement model based on inter-
val intuitionistic fuzzy number preference for large group
decision-making problems. Zamri and Abdullah [27] pro-
posed IT2TrFS entropy MADM methods. These studies
provided specific ideas and laid a good foundation for our
study. However, existing studies do not consider the impact
of risk preferences of decision makers on decision results.
For fuzzy MADM problems, decision makers have to be
classified in accordance with their risk preferences. As IT2FS
is used to portray ambiguity and uncertainty, introducing the
risk preferences of decision makers in making decisions is a
practical approach [28–30].

3. Preliminary Knowledge

Let𝑋 be a crisp set. Let Int([0, 1]) denote the set of all closed
subintervals of [0, 1]. Amapping𝐴:𝑋 → 𝑋([0, 1]) is known
as an IT2FS in 𝑋. For each 𝑥 ∈ 𝑋, 𝐴(𝑥) = [𝐴

−
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+
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𝐴. The type-1 fuzzy sets 𝐴−:𝑋 → [0, 1] and 𝐴+:𝑋 → [0, 1]

are referred to as a lower fuzzy set of𝐴 and an upper fuzzy set
of 𝐴, respectively. The values 𝐴−(𝑥) and 𝐴+(𝑥) represent the
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Figure 1: Measurement of IT2TrF risk preferences.
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(𝑥)). Additionally, 𝐴 is a nonnegative IT2TrF
number in𝑋 and is expressed as follows:
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By applying the extension principle proposed by Zadeh
[31] to the IT2TrF environment, the operations of addi-
tion and multiplication by a nonnegative ordinary number
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follows:
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The multiplication operation between a nonnegative real
value 𝜆 and 𝐴
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is defined as follows:
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4. Theoretical Basis

In this paper, the proposed IT2IFS MADM method con-
sidering risk preference mainly refers to two core contents.

One aspect is measuring the risk appetite of IT2IFS makers.
Another is choosing the suitable ranking method. The two
aspects are explained in Sections 4.1 and 4.2.

4.1. Measurement of Risk Preferences of Decision Makers

4.1.1. Fundamental Principle. Each IT2TrF has a lower limit
and upper limit simultaneously. For example, according to
Figure 1, the lower limit and upper limit of IT2TrF𝐴 are𝐴− =
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respectively. These lower and upper limits are type-1 trape-
zoidal fuzzy numbers. The area between the lower and upper
limits is the fuzzy zone of an IT2TrF; namely, IT2TrF is the
set of all type-1 trapezoidal fuzzy numbers in a fuzzy field.
The core of risk preference measurement of decision makers
lies in different attitudes toward the fuzzy zone. When the
decision that a decision maker makes is closer to 𝐴−, the risk
preference is close to 0 and the decision maker belongs to the
type of complete risk avoidance. When the decision is closer
to 𝐴+, the risk preference is close to 1 and the decision maker
belongs to the type of complete risk preference. Based on
the different risk preferences of decision makers, the value of
decision making is between 𝐴− and 𝐴+. Therefore, the value
of risk preference of decision makers is also between 0 and 1.
According to this principle, a risk preference coefficient 𝜃 of
decision makers is introduced.

4.1.2. Measurement Method. According to the basic principle
of risk preference measurement of decision makers and
Figure 1, we propose the following risk preference measure-
ment formula:
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According to formula (7)–(9), the range of risk preference
coefficient is 0 ≤ 𝜃 ≤ 1. With increasing 𝜃, the decision
maker is inclined toward risk preference. The given calcu-
lation method of risk preference coefficient is based on the
proportional relationship of the trapezoid area.The trapezoid
area of the decision making is determined by subjective risk
preference, in this sense that risk preference coefficient is
computed subjectively.

4.2. Likelihood of Trapezoidal Fuzzy Number Preference Rela-
tions. The ranking method based on likelihood is one of
the most widely used ranking methods for FMADM [30],
and it has many excellent properties such as transmission
and complementation. Particularly for interval type-2, Chen
[25] proved through experimental studies that the ranking

method based on likelihood is more convenient to calculate
andmore practical than othermethods such as QUALIFLEX,
ELECTRE, and TOPSIS. However, Chen did not consider the
risk preferences of decision makers in his interval type-2 set
rankingmethod based on likelihood. Considering that Chen’s
study does not apply definition of likelihood, we provide
the new definition of likelihood of trapezoidal fuzzy number
preference relations.
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Theproperties of likelihood𝐿(𝐴
𝜌

≥ 𝐴
𝛽
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(Appendix B provides a demonstration):
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5. Model Algorithm

5.1. Problem. We consider an MCDA problem of IT2TrF in
which the ratings of the alternative evaluations and criterion
importance are expressed as IT2TrF numbers. We define𝑍 =
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criteria set that contains the criteria by which the alternative
performances are measured and where 𝑛 is the number of
criteria. The set 𝐶 can generally be divided into two sets, 𝐶I
and 𝐶II (𝐶I ∩ 𝐶II = 0, 𝐶I ∪ 𝐶II = 𝐶), where 𝐶I denotes
a collection of benefit criteria (i.e., a larger value indicates
greater preference) and𝐶II denotes a collection of cost criteria
(i.e., a smaller value indicates greater preference).
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denote the eval-
uative rating of an alternative 𝑧

𝑖

∈ 𝑍 with respect to a
criterion 𝑐

𝑗

∈ 𝐶. Let 𝐴
𝑖

−

(𝑥
𝑗

) and 𝐴
𝑖

+

(𝑥
𝑗

) denote the lower

and upper membership functions of 𝐴
𝑖𝑗

, respectively, where
𝐴
𝑖𝑗

is represented as follows:

𝐴
𝑖𝑗

= [𝐴
𝑖𝑗

−

, 𝐴
𝑖𝑗

+

] = [(𝑎
1𝑖𝑗

−

, 𝑎
2𝑖𝑗

−

, 𝑎
3𝑖𝑗

−

, 𝑎
4𝑖𝑗

−

; ℎ
𝐴𝑗

−

) ,

(𝑎
1𝑖𝑗

+

, 𝑎
2𝑖𝑗

+

, 𝑎
3𝑖𝑗

+

, 𝑎
4𝑖𝑗

+

; ℎ
𝐴𝑗

+

)] ,

(10)

where 0 ≤ 𝑎
1𝑖𝑗

−

≤ 𝑎
2𝑖𝑗

−

≤ 𝑎
3𝑖𝑗

−

≤ 𝑎
4𝑖𝑗

−, 0 ≤ 𝑎
1𝑖𝑗

+

≤ 𝑎
2𝑖𝑗

+

≤

𝑎
3𝑖𝑗

+

≤ 𝑎
4𝑖𝑗

+, 𝑎
1𝑖𝑗

+

≤ 𝑎
1𝑖𝑗

−, 𝑎
4𝑖𝑗

−

≤ 𝑎
4𝑖𝑗

+, 0 ≤ ℎ
𝐴𝑖𝑗

−

≤ ℎ
𝐴𝑖𝑗

+

≤ 1,
and 𝐴

𝑖𝑗

−

⊆ 𝐴
𝑖𝑗

+ (i.e., if and only if, ∀𝑥
𝑗

∈ 𝑋, 𝐴
𝑖

−

(𝑥
𝑗

) ≤

𝐴
𝑖

+

(𝑥
𝑗

)).
Similarly, let a nonnegative IT2TrF number𝑊

𝑗

denote the
importance weight of a criterion 𝑐

𝑗

∈ 𝐶. Let 𝑊−(𝑥
𝑗

) and
𝑊
+

(𝑥
𝑗

) denote the lower and upper membership functions
of𝑊
𝑗

, respectively.𝑊
𝑗

is expressed as follows:

𝑊
𝑗

= [𝑊
𝑗

−

,𝑊
𝑗

+

] = [(𝑊
1𝑗

−

,𝑊
2𝑗

−

,𝑊
3𝑗

−

,𝑊
4𝑗

−

; ℎ
𝑊𝑗

−

) ,

(𝑊
1𝑗

+

,𝑊
2𝑗

+

,𝑊
3𝑗

+

,𝑊
4𝑗

+

; ℎ
𝑊𝑗

+

)] ,

(11)

where 0 ≤ 𝑊
1𝑗

−

≤ 𝑊
2𝑗

−

≤ 𝑊
3𝑗

−

≤ 𝑊
4𝑗

−, 0 ≤ 𝑊
1𝑗

+

≤ 𝑊
2𝑗

+

≤

𝑊
3𝑗

+

≤ 𝑊
4𝑗

+,𝑊
1𝑗

+

≤ 𝑊
1𝑗

−,𝑊
4𝑗

−

≤ 𝑊
4𝑗

+, 0 ≤ ℎ
𝑊𝑗

−

≤ ℎ
𝑊𝑗

+

≤

1, and 𝑊
𝑗

−

⊆ 𝑊
𝑗

+ (i.e., if and only if, ∀𝑥
𝑗

∈ 𝑋, 𝑊−(𝑥
𝑗

) ≤

𝑊
+

(𝑥
𝑗

)).
Based on the approach of converting linguistic vari-

ables to IT2TrF numbers, where the importance weights of
each attribute and the evaluative ratings of each alternative
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Table 1: Risk preference and corresponding risk preference coeffi-
cient 𝜃.

Risk preference Risk preference coefficient 𝜃
Absolute risk aversion 0
Very strong risk aversion 0.1
Strong risk aversion 0.2
Medium risk aversion 0.3
Weak risk aversion 0.4
Risk neutral 0.5
Weak risk preference 0.6
Medium risk preference 0.7
Strong risk preference 0.8
Very strong risk preference 0.9
Absolute risk preference 1

are converted to IT2TrF numbers, the following proposed
algorithm is proposed to solve the problem of obtaining
the different ranking results with different risk preference
coefficient 𝜃.Thus, decisionmakers can select risk preference
coefficient 𝜃 according to the environment to rank the
alternatives (see Table 1).

5.2. Proposed Algorithm. The proposed IT2TrF MADM con-
sidering risk preference is as follows.

(1) The Decision Matrix 𝐴 Is Initialized. An MCDA problem
is formulated. The alternative set 𝑍 = {𝑧

1

, 𝑧
2

, . . . , 𝑧
𝑚

} and the
criterion set 𝐶 = {𝑐

1

, 𝑐
2

, . . . , 𝑐
𝑛

} are specified. The decision
matrix 𝐴 is established. 𝐴

𝑖𝑗

denotes the evaluation value of
alternative 𝑧

𝑖

with respect to the criterion 𝑐
𝑗

. Matrix 𝐴 is
expressed as follows:

𝐴 =

[
[
[
[
[
[

[

𝐴
11

𝐴
12

⋅ ⋅ ⋅ 𝐴
1𝑛

𝐴
21

𝐴
22

⋅ ⋅ ⋅ 𝐴
2𝑛

...
...

...

𝐴
𝑚1

𝐴
𝑚2

⋅ ⋅ ⋅ 𝐴
𝑚𝑛

]
]
]
]
]
]

]

. (12)

(2) The Risk Preference Coefficient 𝜃 Is Introduced. To differ-
entiate the risk preferences of different decision makers, we
introduce risk preference coefficient 𝜃 and translate IT2TrF
𝐴 = [𝐴

−

, 𝐴
+

] into interval type-1 trapezoidal fuzzy number
𝐵 = [𝑏

1

, 𝑏
2

, 𝑏
3

, 𝑏
4

; ℎ
𝑏

], shown in the following formula:

𝐵 = 𝜃𝐴
−

+ (1 − 𝜃)𝐴
+

𝐵 =

[
[
[
[
[
[

[

𝐵
11

𝐵
12

⋅ ⋅ ⋅ 𝐵
1𝑛

𝐵
21

𝐵
22

⋅ ⋅ ⋅ 𝐵
2𝑛

...
...

...

𝐵
𝑚1

𝐵
𝑚2

⋅ ⋅ ⋅ 𝐵
𝑚𝑛

]
]
]
]
]
]

]

,
(13)

where 𝐵
𝑖𝑗

= (𝑏
1𝑖𝑗

, 𝑎
2𝑖𝑗

, 𝑎
3𝑖𝑗

, 𝑎
4𝑖𝑗

; ℎ
𝑖𝑗

).

(3) Likelihood Computation 𝐿(𝐵
𝑖𝑗

≥ 𝐵
𝑖



𝑗

) Is Performed.
Formula (9) is applied to compute the likelihoods 𝐿(𝐵

𝑖𝑗

≥

𝐵
𝑖



𝑗

) for each criterion 𝑐
𝑗

∈ 𝐶 and each pair of alternatives
𝑧
𝑖

∈ 𝑍 and 𝑧
𝑖

 ∈ 𝑍 (𝑖


= 1, 2, . . . , 𝑚, 𝑖


̸= 𝑖).

(4) The Likelihood-Based Performance Index 𝑃(𝐵
𝑖𝑗

) Is Calcu-
lated. The likelihood 𝐿(𝐵

𝑖𝑗

≥ 𝐵
𝑖



𝑗

) represents the possibility
of 𝐵
𝑖𝑗

≥ 𝐵
𝑖



𝑗

holding. If the evaluative rating 𝐵
𝑖𝑗

has a high
possibility of being greater than or equal to the evaluative
rating 𝐵

𝑖



𝑗

, then the alternative 𝑧
𝑖

∈ 𝑍 results in improved
performance for a benefit criterion 𝑐

𝑗

∈ 𝐶I compared to
𝑧
𝑖

 ∉ 𝑍. By contrast, if the evaluative rating 𝐵
𝑖



𝑗

has a high
possibility of being greater than or equal to the evaluative
rating 𝐵

𝑖𝑗

, the alternative 𝑧
𝑖

 ∉ 𝑍 results in improved
performance for a benefit criterion 𝑐

𝑗

∈ 𝐶II compared to
𝑧
𝑖

∈ 𝑍. 𝑃(𝐵
𝑖𝑗

) is defined as follows:

𝑃 (𝐵
𝑖𝑗

) =

{{{{{

{{{{{

{

𝑚

∑

𝑖



=1,𝑖



̸=𝑖

𝐿 (𝐵
𝑖
𝑗

≥ 𝐵
𝑖



𝑗

) , 𝑐
𝑗

∈ 𝐶I,

𝑚

∑

𝑖



=1,𝑖



̸=𝑖

𝐿 (𝐵
𝑖



𝑗

≥ 𝐵
𝑖
𝑗

) , 𝑐
𝑗

∈ 𝐶II.

(14)

(5) The Comprehensive Evaluation Value of Each Alternative
𝐸
𝑖

Is Calculated. In MADM problems, different attributes are
usually given different weights. Considering the impact of
attribute weights on the basis of the evaluation 𝑃(𝐵

𝑖𝑗

), we
introduce a comprehensive evaluation 𝐸

𝑖

of 𝑧
𝑖

∈ 𝑍 defined
as follows:

𝐸
𝑖

=

𝑛

⨁
𝑗=1

𝑃 (𝐵
𝑖
𝑗

) ⋅ 𝑊
𝑗

= [

[

(

𝑛

∑
𝑗=1

𝑃 (𝐵
𝑖𝑗

)

⋅ 𝑊
1𝑗

−

,

𝑛

∑
𝑗=1

𝑃 (𝐵
𝑖𝑗

) ⋅ 𝑊
2𝑗

−

,

𝑛

∑
𝑗=1

𝑃 (𝐵
𝑖𝑗

)

⋅ 𝑊
3𝑗

−

,

𝑛

∑
𝑗=1

𝑃 (𝐵
𝑖𝑗

) ⋅ 𝑊
4𝑗

−

;
𝑛

min
𝑗=1

ℎ
𝑊𝑗

−

) ,(

𝑛

∑
𝑗=1

𝑃 (𝐵
𝑖𝑗

)

⋅ 𝑊
1𝑗

+

,

𝑛

∑
𝑗=1

𝑃 (𝐵
𝑖𝑗

) ⋅ 𝑊
2𝑗

+

,

𝑛

∑
𝑗=1

𝑃 (𝐵
𝑖𝑗

)

⋅ 𝑊
3𝑗

+

,

𝑛

∑
𝑗=1

𝑃 (𝐵
𝑖𝑗

) ⋅ 𝑊
4𝑗

+

;
𝑛

min
𝑗=1

ℎ
𝑊𝑗

+

)]

]

𝐸
𝑖

= [𝐸
𝑖

−

, 𝐸
𝑖

+

] = [(𝑒
1𝑖

−

, 𝑒
2𝑖

−

, 𝑒
3𝑖

−

, 𝑒
4𝑖

−

; ℎ
𝐸𝑖

−

) ,

(𝑒
1𝑖

+

, 𝑒
2𝑖

+

, 𝑒
3𝑖

+

, 𝑒
4𝑖

+

; ℎ
𝐸𝑖

+

)] ,

(15)

where 0 ≤ 𝑒
1𝑖

−

≤ 𝑒
2𝑖

−

≤ 𝑒
3𝑖

−

≤ 𝑒
4𝑖

−, 0 ≤ 𝑒
1𝑖

+

≤ 𝑒
2𝑖

+

≤

𝑒
3𝑖

+

≤ 𝑒
4𝑖

+, 𝑒
1𝑖

+

≤ 𝑒
1𝑖

−, 𝑒
4𝑖

−

≤ 𝑒
4𝑖

+, and 0 ≤ ℎ
𝐸𝑖

−

≤ ℎ
𝐸𝑖

+

≤ 1,
𝐸
𝑖

−

⊆ 𝐸
𝑖

+.
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(6) Alternatives Are Ranked. Comprehensive evaluation 𝐸
𝑖

is
IT2TrF, so 𝐸

𝑖

cannot be directly compared with each other.
Therefore, to rank the comprehensive evaluation 𝐸

𝑖

(𝑖 =

1, 2, . . . , 𝑚), we define the signed distance [24] 𝜀
𝑖

as follows:

𝜀
𝑖

=
1

8
[𝑒
1𝑖

−

+ 𝑒
2𝑖

−

+ 𝑒
3𝑖

−

+ 𝑒
4𝑖

−

+ 4 ⋅ 𝑒
1𝑖

+

+ 2𝑒
2𝑖

+

+ 2𝑒
3𝑖

+

+ 4𝑒
4𝑖

+

+ 3 (𝑒
2𝑖

+

+ 𝑒
3𝑖

+

− 𝑒
1𝑖

+

− 𝑒
4𝑖

+

)
ℎ
𝐸

𝑖

−

ℎ
𝐸

𝑖

+

] ,

(16)

𝜀
𝑖

denotes the distance of comprehensive evaluation index 𝐸
𝑖

to [(0 0 0 0; 1), (0 0 0 0; 1)]. For 𝑧
𝑖

∈ 𝑍, the greater the value 𝜀
𝑖

is, the better the alternative is than others.

6. Applications and Comparative Discussions

6.1. Application to Supplier Selection Problem. An aviation
project needs to select one supplier from four candidate
enterprises.The supplier charges the production of an aircraft
wing-body fairing. Nine attributes can be based on facili-
ties assurance (𝑐

1

), technological compatibility (𝑐
2

), degree
of complementarity (𝑐

3

), win-win nature (𝑐
4

), management
experience (𝑐

5

), collaborative degree (𝑐
6

), credibility (𝑐
7

),
prospects (𝑐

8

), and innovation (𝑐
9

); namely, the attribute set
𝐶 = (𝑐

1

, 𝑐
2

, 𝑐
3

, . . . , 𝑐
9

). Chen et al. [7] used a nine-point
linguistic rating scale (i.e., absolutely poor, very poor, poor,
medium poor, fair, medium good, good, very good, and
absolutely good) to evaluate the options. Higher linguistic
rating values indicate greater preference; thus, all of the
criteria in 𝐶 can be considered as benefit criteria, and 𝐶I = 𝐶
and 𝐶II = 𝜙. Based on the approach of converting linguistic
variables to IT2TrF numbers, the importance weight 𝜔

𝑗

of
each 𝑐

𝑗

and the evaluative ratings of each 𝑧
𝑖

with respect to
𝑐
𝑗

are established and presented in Tables 5 to 6.
In the present study, we introduce risk preference coef-

ficient 𝜃 for different risk preferences. Using the proposed
method for IT2TrFS MCDA, we obtain different ranking
results of alternatives with different risk preference coeffi-
cients, which are presented in Table 2.

As shown in Table 2, when decision makers are inclined
to risk aversion, namely, 𝜃 ∈ [0, 0.4], the best treatment
option is 𝑍

1

; and when they are inclined to risk preference
and neutral, namely, 𝜃 ∈ [0.5, 1.0], the best treatment option
is 𝑍
2

. In the case of the aviation project, the decision makers
are risk averse and the company is on a steady growth path;
thus, it needs to make sound decisions. The risk preference
coefficient of decision makers is 0.2, so the best selection is
program 𝑍

1

.

6.2. Application to Engineering Investment Project Evalua-
tion Problem. To solve the engineering investment project

Table 2: The ranking results with different 𝜃.

𝜀
1

𝜀
2

𝜀
3

Ranking results
𝜃 = 0 11.2168 11.1865 10.5695 z

1

≻ z
2

≻ z
3

𝜃 = 0.1 11.2056 11.1770 10.5903 𝑧
1

≻ 𝑧
2

≻ 𝑧
3

𝜃 = 0.2 11.1935 11.1687 10.6107 z
1

≻ z
2

≻ z
3

𝜃 = 0.3 11.1805 11.1617 10.6307 z
1

≻ z
2

≻ z
3

𝜃 = 0.4 11.1666 11.1560 10.6502 z
1

≻ z
2

≻ z
3

𝜃 = 0.5 11.1517 11.1519 10.6693 z
2

≻ z
1

≻ z
3

𝜃 = 0.6 11.1374 11.1477 10.6878 z
2

≻ z
1

≻ z
3

𝜃 = 0.7 11.1261 11.1387 10.7082 z
2

≻ z
1

≻ z
3

𝜃 = 0.8 11.1394 11.0926 10.7409 z
2

≻ z
1

≻ z
3

𝜃 = 0.9 11.1641 11.0679 10.7409 z
2

≻ z
1

≻ z
3

𝜃 = 1.0 11.1891 11.0428 10.7409 z
2

≻ z
1

≻ z
3

Table 3: The ranking results with different 𝜃.

𝜀
1

𝜀
2

𝜀
3

𝜀
4

Ranking results
𝜃 = 0 12.0645 12.7036 12.7192 12.5482 z

3

≻ z
2

≻ z
4

≻ z
1

𝜃 = 0.1 12.1504 12.6811 12.6274 12.5768 z
2

≻ z
3

≻ z
4

≻ z
1

𝜃 = 0.2 12.2387 12.6580 12.5329 12.6059 z
2

≻ z
4

≻ z
3

≻ z
1

𝜃 = 0.3 12.3235 12.6342 12.4818 12.5961 z
2

≻ z
4

≻ z
3

≻ z
1

𝜃 = 0.4 12.4058 12.6095 12.4348 12.5853 z
2

≻ z
4

≻ z
3

≻ z
1

𝜃 = 0.5 12.5129 12.5636 12.3874 12.5716 z
4

≻ z
2

≻ z
1

≻ z
3

𝜃 = 0.6 12.6462 12.4867 12.3483 12.5544 z
1

≻ z
4

≻ z
2

≻ z
3

𝜃 = 0.7 12.8194 12.3218 12.3736 12.5208 z
1

≻ z
4

≻ z
3

≻ z
2

𝜃 = 0.8 12.9711 12.1699 12.4113 12.4831 z
1

≻ z
4

≻ z
3

≻ z
2

𝜃 = 0.9 13.1231 12.0569 12.4122 12.4432 z
1

≻ z
4

≻ z
3

≻ z
2

𝜃 = 1.0 13.2799 11.9645 12.3986 12.3925 z
1

≻ z
3

≻ z
4

≻ z
2

evaluation problem, three decision makers use the following
five attributes: total investment amount (𝑐

1

), profit ratio of
investment (𝑐

2

), internal rate of return (𝑐
3

), loan repayment
rate (𝑐

4

), and investment recovery period (𝑐
5

), to evaluate the
investment project. The set of all alternatives is denoted by
𝑧 = (𝑧

1

, 𝑧
2

, 𝑧
3

, 𝑧
4

). The set of evaluative attribute is denoted
by 𝐶 = (𝑐

1

, 𝑐
2

, 𝑐
3

, 𝑐
4

, 𝑐
5

), where 𝐶I = (𝑐
1

, 𝑐
2

, 𝑐
3

) and 𝐶II =

(𝑐
4

, 𝑐
5

). We use the GITFNWGAoperator [32] to combine the
opinions of the three decision makers to obtain an average
weighting matrix and an average decision matrix. Based on
the two average matrices, the importance weight 𝜔

𝑗

of each
𝑐
𝑗

and the evaluative ratings of each 𝑧
𝑖

with respect to 𝑐
𝑗

are
shown in Table 7.

Using the proposed method for IT2TrFS MCDA, we
obtain different ranking results of alternatives with different
risk preference coefficients, which are presented in Table 3.

According to this table, we can conclude that when a
decision maker is absolutely risk averse, namely, 𝜃 = 0,
the best selection is program 𝑧

3

; when 𝜃 ∈ [0.1, 0.4], the
best selection is program 𝑧

2

; when the decision maker is
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Table 4: Comparison analysis of the obtained results.

Research source Comparative methods Ranking results

The supplier selection problem
The likelihood-based MCDAmethod [25] z

1

≻ z
2

≻ z
3

The linear assignment method [33] z
2

≻ z
3

, z
2

≻ z
1

The extended QUALIFLEX method [7] z
2

≻ z
1

≻ z
3

The engineering investment project evaluation problems
The likelihood-based MCDAmethod [25] z

4

≻ z
2

≻ z
1

≻ z
3

The linear assignment method [33] z
2

≻ z
4

≻ z
3

≻ z
1

The extended QUALIFLEX method [7] z
2

≻ z
4

≻ z
3

≻ z
1

risk neutral, namely, 𝜃 = 0.5, the best selection is program
𝑧
4

; when the decision maker is risk preferred, namely, 𝜃 ∈

[0.6, 1], the best selection is program 𝑧
1

. According to the
actual situation, the company is in its infancy and decision
makers need to make risk decisions to promote the rapid
growth of the company. Thus, decision makers tend toward
risk preference, and the risk preference coefficient is 0.8,
which means that the final option is 𝑧

1

.

6.3. Algorithm Comparison Analysis. As discussed, the sup-
plier selection for the aviation project and the engineering
investment project evaluation problem verify the validity and
feasibility of the proposedmethod. In this section, we further
illustrate the superiority of the proposed method through
comparison analysis.

We have chosen several classical algorithms of the
existing IT2FS MADM including an interval type-2 fuzzy
PROMETHEE method using a likelihood-based outranking
comparison approach [25]. A linear assignment method for
multicriteria decision analysis with IT2FS [33], the extended
QUALIFLEX method for multicriteria decision analysis is
based on IT2FS and applications to medical decision making
[7]. As shown in Table 4, in the aviation supplier selection
problem, through the likelihood-based MCDA method, we
can obtain the final ranking of suppliers as 𝑧

1

≻ 𝑧
2

≻ 𝑧
3

;
through the linear assignment method, we can obtain the
final option as 𝑧

2

, but we cannot rank 𝑧
1

and 𝑧
3

; through
the extended QUALIFLEX method, we can obtain the final
ranking of suppliers as 𝑧

2

≻ 𝑧
1

≻ 𝑧
3

. Given the preceding
results, we can conclude that the likelihood-based MCDA
method and the extended QUALIFLEX method are superior
to the linear assignment method because these two programs
can provide not only the best solutions but also the ranking
of programs.However, neither of these twomethods take into
account the risk preferences; the results show only an extreme
case of the proposed method. For example, the final ranking
of the likelihood-basedMCDAmethod is 𝑧

1

≻ 𝑧
2

≻ 𝑧
3

, which
is the same as the results of themethod proposed in this study
when decision makers are inclined to risk aversion, namely,
𝜃 ∈ [0, 0.4]. The final ranking of the extended QUALIFLEX
method is 𝑧

2

≻ 𝑧
1

≻ 𝑧
3

, which is the same as the results of
our proposed method when decision makers are neutral or
inclined to risk preference, namely, 𝜃 ∈ [0.5, 1.0]. In reality,
according to risk appetite and enterprise development, the
airline decision makers select the risk preference coefficient
0.2 and then the final option is 𝑧

1

. Therefore, the proposed

Table 5: The corresponding weights𝑊
𝑗

of criterion 𝑐
𝑗

.

Corresponding weight𝑊
𝑗

of attribute 𝑐
𝑗

𝑐
1

[(1.0000 1.0000 1.0000 1.0000; 0.8),
(1.0000 1.0000 1.0000 1.0000; 1.0)];

𝑐
2

[(0.0075 0.0075 0.0150 0.0525; 0.8),
(0.0000 0.0000 0.0200 0.0700; 1.0)];

𝑐
3

[(0.0875 0.1200 0.1600 0.1825; 0.8),
(0.0400 0.1000 0.1800 0.2300; 1.0)];

𝑐
4

[(1.0000 1.0000 1.0000 1.0000; 0.8),
(1.0000 1.0000 1.0000 1.0000; 1.0)];

𝑐
5

[(0.2325 0.2550 0.3250 0.3575; 0.8),
(0.1700 0.2200 0.3600 0.4200; 1.0)];

𝑐
6

[(0.4025 0.4525 0.5375 0.5675; 0.8),
(0.3200 0.4100 0.5800 0.6500; 1.0)];

𝑐
7

[(0.9475 0.9850 0.9925 0.9925; 0.8),
(0.9300 0.9800 1.0000 1.0000; 1.0)];

𝑐
8

[(0.6500 0.6725 0.7575 0.7900; 0.8),
(0.5800 0.6300 0.8000 0.8600; 1.0)];

𝑐
9

[(0.7825 0.8150 0.8850 0.9075; 0.8),
(0.7200 0.7800 0.9200 0.9700; 1.0)]

method not only can obtain a complete sort of result, but also
can fully reflect the flexibility of the decision process and the
subjective views of decision makers.

For the engineering investment project evaluation prob-
lem, through the likelihood-based MCDA method, we can
obtain the final ranking of the program as 𝑧

4

≻ 𝑧
2

≻ 𝑧
1

≻ 𝑧
3

;
through the linear assignment method, we can obtain the
final ranking of the program as 𝑧

2

≻ 𝑧
4

≻ 𝑧
3

≻ 𝑧
1

; through
the extended QUALIFLEX method, we can obtain the final
ranking of the programas 𝑧

2

≻ 𝑧
4

≻ 𝑧
3

≻ 𝑧
1

. As the preceding
findings show, all of the ranking results of the three methods
are an extreme case of this proposed method. For example,
the final ranking of the likelihood-based MCDA method is
𝑧
4

≻ 𝑧
2

≻ 𝑧
1

≻ 𝑧
3

, which is the same as the result of our
proposedmethodwhen 𝜃 = 0.5; the final ranking of the linear
assignment method is 𝑧

2

≻ 𝑧
4

≻ 𝑧
3

≻ 𝑧
1

, which is the same
as the result of our proposed method when 𝜃 ∈ [0.2, 0.4]; the
final ranking of the extended QUALIFLEX method is 𝑧

2

≻

𝑧
4

≻ 𝑧
3

≻ 𝑧
1

, which is the same as the result of our proposed
methodwhen 𝜃 ∈ [0.2, 0.4]. According to the actual situation,
the company is at the initial stage and needs bold decisions to
facilitate its rapid growth, so the decision makers choose risk
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Table 6: The evaluative rating of the alternative 𝑧
𝑖

with respect to the criterion 𝑐
𝑗

.

Evaluation value of alternative 𝑧
1

with respect to 𝑐
𝑗

∈ 𝐶

𝑐
1

[(0.9475 0.9850 0.9925 0.9925; 0.8), (0.8300 0.8800 1.0000 1.0000; 1.0)];
𝑐
2

[(0.6500 0.6725 0.7575 0.7900; 0.8), (0.5800 0.6300 0.8000 0.8600; 1.0)];
𝑐
3

[(0.2325 0.2550 0.3250 0.3575; 0.8), (0.1700 0.2200 0.3600 0.4200; 1.0)];
𝑐
4

[(0.9475 0.9850 0.9925 0.9925; 0.8), (0.8300 0.8800 1.0000 1.0000; 1.0)];
𝑐
5

[(0.0875 0.1200 0.1600 0.1825; 0.8), (0.0400 0.1000 0.1800 0.2300; 1.0)];
𝑐
6

[(0.0875 0.1200 0.1600 0.1825; 0.8), (0.0400 0.1000 0.1800 0.2300; 1.0)];
𝑐
7

[(0.4025 0.4525 0.5375 0.5675; 0.8), (0.3200 0.4100 0.5800 0.6500; 1.0)];
𝑐
8

[(0.7825 0.8150 0.8850 0.9075; 0.8), (0.7200 0.7800 0.9200 0.9700; 1.0)];
𝑐
9

[(0.2325 0.2550 0.3250 0.3575; 0.8), (0.1700 0.2200 0.3600 0.4200; 1.0)];
Evaluation value of alternative 𝑧

2

with respect to 𝑐
𝑗

∈ 𝐶

𝑐
1

[(0.9475 0.9850 0.9925 0.9925; 0.8), (0.8300 0.8800 1.0000 1.0000; 1.0)];
𝑐
2

[(0.7825 0.8150 0.8850 0.9075; 0.8), (0.7200 0.7800 0.9200 0.9700; 1.0)];
𝑐
3

[(0.0875 0.1200 0.1600 0.1825; 0.8), (0.0400 0.1000 0.1800 0.2300; 1.0)];
𝑐
4

[(0.0075 0.0075 0.0150 0.0525; 0.8), (0.0000 0.0000 0.0200 0.0700; 1.0)];
𝑐
5

[(0.7825 0.8150 0.8850 0.9075; 0.8), (0.7200 0.7800 0.9200 0.9700; 1.0)];
𝑐
6

[(0.0875 0.1200 0.1600 0.1825; 0.8), (0.0400 0.1000 0.1800 0.2300; 1.0)];
𝑐
7

[(0.2325 0.2550 0.3250 0.3575; 0.8), (0.1700 0.2200 0.3600 0.4200; 1.0)];
𝑐
8

[(1.0000 1.0000 1.0000 1.0000; 0.8), (1.0000 1.0000 1.0000 1.0000; 1.0)];
𝑐
9

[(0.9475 0.9850 0.9925 0.9925; 0.8), (0.8300 0.8800 1.0000 1.0000; 1.0)];
Evaluation value of alternative 𝑧

3

with respect to 𝑐
𝑗

∈ 𝐶

𝑐
1

[(0.4025 0.4525 0.5375 0.5675; 0.8), (0.3200 0.4100 0.5800 0.6500; 1.0)];
𝑐
2

[(0.0875 0.1200 0.1600 0.1825; 0.8), (0.0400 0.1000 0.1800 0.2300; 1.0)];
𝑐
3

[(0.0000 0.0000 0.0000 0.0000; 0.8), (0.0000 0.0000 0.0000 0.0000; 1.0)];
𝑐
4

[(0.7825 0.8150 0.8850 0.9075; 0.8), (0.7200 0.7800 0.9200 0.9700; 1.0)];
𝑐
5

[(0.9475 0.9850 0.9925 0.9925; 0.8), (0.8300 0.8800 1.0000 1.0000; 1.0)];
𝑐
6

[(0.6500 0.6725 0.7575 0.7900; 0.8), (0.5800 0.6300 0.8000 0.8600; 1.0)];
𝑐
7

[(0.4025 0.4525 0.5375 0.5675; 0.8), (0.3200 0.4100 0.5800 0.6500; 1.0)];
𝑐
8

[(0.9475 0.9850 0.9925 0.9925; 0.8), (0.8300 0.8800 1.0000 1.0000; 1.0)];
𝑐
9

[(0.7825 0.8150 0.8850 0.9075; 0.8), (0.7200 0.7800 0.9200 0.9700; 1.0)];

preference coefficient 0.8 and the final choice of investment
program is 𝑧

1

. This example further confirms the advantages
of the proposed method. When the comparison methods are
used, one can go against thewishes of policymakers andmake
an inappropriate choice of programs.

Of course, because of the different research questions
and initial program data, not every interval type-2 fuzzy
decision problem presents the results of these two examples.
Sometimes, different risk preference coefficients can obtain
results similar to the decision-making results; sometimes,
from risk aversion to risk neutrality and risk preference,
one change is observed in the ranking results (Section 6.1);
sometimes, with the change of 𝜃, the ranking results also
change many times (Section 6.2). However, overall, with the
change of 𝜃, different results have existing larger likelihood, so
decision makers need to select the appropriate results based
on actual risk preference.

The given two examples can fully reflect the advantages of
the proposed method.

First, the proposed algorithm fully reflects the flexibility
of the decision-making process, which means that decision
makers can select different 𝜃 to obtain different decision

results according to their own risk preference and the actual
decision environment. Compared with current methods, the
proposed algorithm is more reasonable.

Second, the proposed method can be used widely, which
means that, for the actual decision problems, regardless of
the risk preference of decision makers and the decision envi-
ronment, all decision makers can obtain reasonable decision
results based on the risk preference coefficient. However, the
current methods can obtain decision results based on only
one situation.

Finally, the proposed method is easy to implement on
a computer and has a good potential to solve practical
problems. At present, the method has been successfully
applied to practical engineering problems with different risk
preferences, such as supplier selection in aviation projects and
engineering investment project evaluation.

7. Conclusion

IT2TFS have more advantages in describing uncertain infor-
mation than the general fuzzy sets. IT2TrF can effectively
describe qualitative indices [7, 24, 25, 33]. In this study,
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Table 7:The collective IT2TrF data using the GITFNWGAoperator
in the engineering investment project evaluation problem.

The importance weights of each 𝜔
𝑗

of each 𝑐
𝑗

𝐶
1

[(0.90 0.97 0.97 0.98; 0.8), (0.83 0.97 0.97 1.00; 1.0)];
𝐶
2

[(0.90 0.97 0.97 0.98; 0.8), (0.83 0.97 0.97 1.00; 1.0)];
𝐶
3

[(0.53 0.63 0.63 0.73; 0.8), (0.43 0.63 0.63 0.83; 1.0)];
𝐶
4

[(0.85 0.93 0.93 0.97; 0.8), (0.77 0.93 0.93 1.00; 1.0)];
𝐶
5

[(0.68 0.70 0.75 0.80; 0.8), (0.56 0.70 0.78 0.90; 1.0)];
The evaluative ratings of each 𝑧

𝑖

with respect to 𝑐
𝑗

𝑧
1

𝐶
1

[(0.73 0.78 0.90 0.94; 0.8), (0.73 0.78 0.90 0.94; 1.0)];
𝐶
2

[(0.56 0.63 0.77 0.82; 0.8), (0.56 0.63 0.77 0.82; 1.0)];
𝐶
3

[(0.78 0.84 0.95 0.98; 0.8), (0.78 0.84 0.95 0.98; 1.0)];
𝐶
4

[(0.88 0.94 0.99 0.99; 0.8), (0.85 0.91 0.97 1.00; 1.0)];
𝐶
5

[(0.42 0.50 0.60 0.75; 0.8), (0.40 0.48 0.50 0.75; 1.0)];
𝑧
2

𝐶
1

[(0.67 0.73 0.88 0.93; 0.8), (0.67 0.73 0.88 0.93; 1.0)];
𝐶
2

[(0.55 0.75 0.93 0.95; 0.8), (0.76 0.80 0.93 0.95; 1.0)];
𝐶
3

[(0.85 0.91 0.97 0.99; 0.8), (0.85 0.91 0.97 0.99; 1.0)];
𝐶
4

[(0.79 0.85 0.93 0.95; 0.8), (0.79 0.85 0.93 0.95; 1.0)];
𝐶
5

[(0.32 0.48 0.84 0.90; 0.8), (0.22 0.60 0.84 0.90; 1.0)];
𝑧
3

𝐶
1

[(0.85 0.91 0.97 0.99; 0.8), (0.85 0.91 0.97 0.99; 1.0)];
𝐶
2

[(0.56 0.63 0.77 0.82; 0.8), (0.56 0.65 0.77 0.82; 1.0)];
𝐶
3

[(0.42 0.55 0.70 0.80; 0.8), (0.53 0.60 0.78 0.90; 1.0)];
𝐶
4

[(0.79 0.85 0.93 0.95; 0.8), (0.79 0.85 0.93 0.95; 1.0)];
𝐶
5

[(0.77 0.82 0.88 1.00; 0.8), (0.84 0.96 0.98 1.0; 1.0)];
𝑧
4

𝐶
1

[(0.73 0.78 0.90 0.94; 0.8), (0.73 0.78 0.90 0.94; 1.0)];
𝐶
2

[(0.46 0.55 0.70 0.75; 0.8), (0.46 0.55 0.70 0.75; 1.0)];
𝐶
3

[(0.70 0.73 0.88 0.98; 0.8), (0.67 0.73 0.88 0.94; 1.0)];
𝐶
4

[(0.85 0.91 0.97 0.99; 0.8), (0.85 0.91 0.97 0.99; 1.0)];
𝐶
5

[(0.93 0.98 1.00 1.00; 0.8), (0.93 0.98 1.00 1.00; 1.0)];

considering the background of the MADM problem, we
conclude the following three research tasks.

(1) We propose the measurement method of risk prefer-
ence for IT2TrF decision makers. Based on different attitudes
of decision makers that have different risk preference toward
the uncertainty range of IT2TrF, the method measures the
risk preference coefficient of decision makers. This method
applies to both IT2TFS and IT2FS.

(2) We propose the calculation method of preference
likelihood of trapezoidal fuzzy numbers. This method is
simple to calculate and easy to implement on a computer.
Using the formula of likelihood, we establish the ranking
method of preference relations of attributes, which applies
not only to decision problems that have given attribute
weights and IT2TrF but also to decision problems that have
given attribute weights and exact value.

(3) From the subjective point of view, considering the
different risk preferences of decision makers, we introduce
the risk preference coefficient and propose a likelihood
decision-making algorithm considering the risk preferences
of decision makers. Through example analysis and algorithm
comparison, the algorithm is proven reasonable.

In this study, the proposed algorithm is mainly applied
to IT2TrF. However, the basic idea of this algorithm is also
applicable to all IT2TFS. The proposed algorithm can be
further extended to the interval Gaussian type-2 fuzzy set
[34] and further examine the IT2TFS multiattribute group
decision-making problems considering the risk preferences
of decision makers.

Appendices

A. The Initial Data of Application Research

The initial data of application research are established in
Tables 5, 6, and 7.

B. Demonstration of the Properties of
Likelihood

Appendix B provides a demonstration of the properties of
likelihood 𝐿(𝐴

𝜌

≥ 𝐴
𝛽

).

Property B.1. If at least one of ℎ
𝐴𝜌

̸= ℎ
𝐴𝛽

, 𝑎
1𝜌

̸= 𝑎
4𝜌

, 𝑎
1𝛽

̸= 𝑎
4𝛽

,
and 𝑎
𝜉𝛽

̸= 𝑎
𝜉𝛽

(𝜉 = 1, 2, 3, 4) holds, we can obtain

0 ≤ max[
∑
4

𝜉=1

max (𝑎
𝜉𝛽

− 𝑎
𝜉𝜌

, 0) + (𝑎
4𝛽

− 𝑎
1𝜌

) + 2max (ℎ
𝐴𝛽

− ℎ
𝐴𝜌

, 0)

∑
4

𝜉=1


𝑎
𝜉𝛽

− 𝑎
𝜉𝜌


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝛽

− ℎ
𝐴𝜌



, 0] < ∞

⇒ −∞ ≤ 1 −max[
∑
4

𝜉=1

max (𝑎
𝜉𝛽

− 𝑎
𝜉𝜌

, 0) + (𝑎
4𝛽

− 𝑎
1𝜌

) + 2max (ℎ
𝐴𝛽

− ℎ
𝐴𝜌

, 0)

∑
4

𝜉=1


𝑎
𝜉𝛽

− 𝑎
𝜉𝜌


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝛽

− ℎ
𝐴𝜌



, 0] < 0

⇒ 0 ≤ max{1 −max[
∑
4

𝜉=1

max (𝑎
𝜉𝛽

− 𝑎
𝜉𝜌

, 0) + (𝑎
4𝛽

− 𝑎
1𝜌

) + 2max (ℎ
𝐴𝛽

− ℎ
𝐴𝜌

, 0)

∑
4

𝜉=1


𝑎
𝜉𝛽

− 𝑎
𝜉𝜌


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝛽

− ℎ
𝐴𝜌



, 0] , 0} ≤ 1.

(B.1)

Namely, 0 ≤ 𝐿(𝐴
𝜌

≥ 𝐴
𝛽

) ≤ 1.
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Property B.2. Given

𝐿 (𝐴
𝜌

≥ 𝐴
𝛽

) = max{1 −max[
∑
4

𝜉=1

max (𝑎
𝜉𝛽

− 𝑎
𝜉𝜌

, 0) + (𝑎
4𝛽

− 𝑎
1𝜌

) + 2max (ℎ
𝐴𝛽

− ℎ
𝐴𝜌

, 0)

∑
4

𝜉=1


𝑎
𝜉𝛽

− 𝑎
𝜉𝜌


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝛽

− ℎ
𝐴𝜌



, 0] , 0}

𝐿 (𝐴
𝛽

≥ 𝐴
𝜌

) = max{1 −max[
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 0] , 0}

⇒

4

∑

𝜉=1

max (𝑎
𝜉𝛽

− 𝑎
𝜉𝜌

, 0) +

4

∑

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) =

4

∑

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽



2max (ℎ
𝐴𝛽

− ℎ
𝐴𝜌

, 0) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0) = 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



∑
4

𝜉=1

max (𝑎
𝜉𝛽

− 𝑎
𝜉𝜌

, 0) + (𝑎
4𝛽

− 𝑎
1𝜌

) + 2max (ℎ
𝐴𝛽

− ℎ
𝐴𝜌

, 0)

∑
4

𝜉=1


𝑎
𝜉𝛽

− 𝑎
𝜉𝜌


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝛽

− ℎ
𝐴𝜌



+
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



= 1

⇒ 𝐿 (𝐴
𝜌

≥ 𝐴
𝛽

) = max{1 −max[
∑
4

𝜉=1

max (𝑎
𝜉𝛽

− 𝑎
𝜉𝜌

, 0) + (𝑎
4𝛽

− 𝑎
1𝜌

) + 2max (ℎ
𝐴𝛽

− ℎ
𝐴𝜌

, 0)

∑
4

𝜉=1


𝑎
𝜉𝛽

− 𝑎
𝜉𝜌


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝛽

− ℎ
𝐴𝜌



, 0] , 0}

= max{1 −max[1 −
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 0] , 0}

= max{min[1 −
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1] , 0}

𝐿 (𝐴
𝛽

≥ 𝐴
𝜌

) = max{1 −max[
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 0] , 0}

= max{min[
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1] , 0} ,

(B.2)

(1) if

min[1 −
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1] ≤ 0

⇒
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



≥ 1

⇒ 𝐿 (𝐴
𝜌

≥ 𝐴
𝛽

) + 𝐿 (𝐴
𝛽

≥ 𝐴
𝜌

)

= max{min[1 −
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1] , 0}

+max{min[
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1] , 0} = 0 +max (1, 0) = 1,

(B.3)
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(2) if

min[1 −
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1] > 0

⇒ 0 ≤
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



< 1

⇒ 𝐿 (𝐴
𝜌

≥ 𝐴
𝛽

) + 𝐿 (𝐴
𝛽

≥ 𝐴
𝜌

)

= max{min[1 −
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1] , 0}

+max{min[
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1] , 0}

= min[1 −
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1]

+max[
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 0] ,

(B.4)

when

0 ≤
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



< 1

⇒ 𝐿 (𝐴
𝜌

≥ 𝐴
𝛽

) + 𝐿 (𝐴
𝛽

≥ 𝐴
𝜌

)

= 1 −
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



+ [
∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



, 1] = 1,

(B.5)

(3) if

∑
4

𝜉=1

max (𝑎
𝜉𝜌

− 𝑎
𝜉𝛽

, 0) + (𝑎
4𝜌

− 𝑎
1𝛽

) + 2max (ℎ
𝐴𝜌

− ℎ
𝐴𝛽

, 0)

∑
4

𝜉=1


𝑎
𝜉𝜌

− 𝑎
𝜉𝛽


+ (𝑎
4𝜌

− 𝑎
1𝜌

) + (𝑎
4𝛽

− 𝑎
1𝛽

) + 2

ℎ
𝐴𝜌

− ℎ
𝐴𝛽



< 0,

⇒ 𝐿 (𝐴
𝜌

≥ 𝐴
𝛽

) + 𝐿 (𝐴
𝛽

≥ 𝐴
𝜌

) = 0 + 1 = 1,

(B.6)

𝐿(𝐴
𝜌

≥ 𝐴
𝛽

) + 𝐿(𝐴
𝛽

≥ 𝐴
𝜌

) = 1.

Property B.3. According to Property B.2, 𝐿(𝐴
𝜌

≥ 𝐴
𝛽

) +

𝐿(𝐴
𝛽

≥ 𝐴
𝜌

) = 1; when 𝐿(𝐴
𝜌

≥ 𝐴
𝛽

) = 𝐿(𝐴
𝛽

≥ 𝐴
𝜌

),
𝐿(𝐴
𝜌

≥ 𝐴
𝛽

) = 𝐿(𝐴
𝛽

≥ 𝐴
𝜌

) = 0.5 holds.
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