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Abstract. A system of nonlinear partial differential equations modeling haptotaxis is investi-
gated. The model arises in cell migration processes involved in tumor invasion. The existence of
unique global classical solutions is proved.
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1. Introduction. Models of complex dynamic biological processes frequently
involve systems of nonlinear partial differential equations for production, growth,
decay, interaction, and spatial movement. For models that include spatial movement
the equations typically contain both diffusion and taxis terms. Our goal in this paper
is to examine the issues of global existence and uniqueness for a model involving spatial
movement and haptotaxis. The term haptotaxis originated with S. B. Carter in 1965:
“. . . the movement of a cell is controlled by the relative strengths of its peripheral
adhesions, and that movements directed in this way, together with the influence of
patterns of adhesion on cell shape are responsible for the arrangement of cells into
complex and ordered tissues” [8]. Cell movement in morphogenesis, inflammation,
wound healing, tumor invasion, and other migrations are the result of haptotactic
responses of cells to differential adhesion strengths [8, 9].

The haptotaxis model we investigate here is a simplified version of a model pro-
posed by Anderson [5] in 2005 to describe tumor invasion into surrounding tissue
(see also [6]). The model involves four key components of the process: tumor cells,
surrounding tissue macromolecules, degradative enzymes, and oxygen. The model in
[5] hybridizes continuum partial differential equations and cellular automata formu-
lations to incorporate cell cycle elements, and a similar model in [7] uses continuum
cell age structure for the same purpose. Both of these investigations model other
features of tumor invasion, including the role of quiescent cells and the evolution
of mutated cell lines of increasingly invasive aggressiveness. Our objective is to in-
vestigate the simplified system of four nonlinear partial differential equations which
underlie the models in [5] and [7]. The mathematical formulation of haptotaxis is
similar to that of more familiar chemotaxis processes for which we refer to the survey
article [16] and the extensive list of references therein. Haptotaxis in tumor growth,
however, possesses unique features in that the movement of tumor cells is directed
to the bound (i.e., nondiffusible) extracellular environment, which supplies essential
oxygen and available space, as it is degraded by the tumor-produced degradative en-
zyme. The mathematical difficulty in treating haptotaxis in this context is that the
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GLOBAL EXISTENCE FOR A HAPTOTAXIS MODEL 1695

haptotaxis term is nonlinearly dependent on the tumor cells through the diffusion of
the degradative enzyme produced by these cells.

We make the following assumptions: The tumor is contained in a region of tissue
Ω. The dependent variables of the model are as follows: p(x, t) is the density of tumor
cells at x ∈ Ω at time t, m(x, t) is the concentration of matrix degradative enzyme
(MDE) at x ∈ Ω at time t, f(x, t) is the density of extracellular matrix macromolecules
at x ∈ Ω at time t, and w(x, t) is the concentration of oxygen at x ∈ Ω at time t. The
equations of the model are as follows:

∂tf = − a(x)mf︸ ︷︷ ︸
degradation

,(H1)

∂tm = αΔm︸ ︷︷ ︸
diffusion

+ d(x) p︸ ︷︷ ︸
production

− b(x)m︸ ︷︷ ︸
decay

,(H2)

∂tp = β Δp︸ ︷︷ ︸
cell motility

− ∇ · (pχ(f)∇f)︸ ︷︷ ︸
haptotaxis

− θ(x,w) p︸ ︷︷ ︸
cell death

+ �(x,w) p︸ ︷︷ ︸
cell division

,(H3)

∂tw = γ Δw︸ ︷︷ ︸
diffusion

+ g(x) f︸ ︷︷ ︸
production

− ω(x, p)w︸ ︷︷ ︸
uptake

− e(x)w︸ ︷︷ ︸
decay

(H4)

for (t, x) ∈ (0,∞) × Ω supplemented with Neumann boundary conditions

∂νm = ∂νp − pχ(f)∂νf = ∂νw = 0 on ∂Ω(H5)

and initial conditions

f(0) = f0 , m(0) = m0 , p(0) = p0 , w(0) = w0 .(H6)

It seems that (H1)–(H6) have not been considered analytically thus far, but rather
related equations of the form

∂tf = h(p, f),(1)

∂tp = β Δp − ∇ ·
(
pχ(f)∇f

)
(2)

have attracted attention, in particular the case

h(p, f) = σ p fr with σ = ±1 and r > 0 .(3)

We refer to [13] for the case of general functions h satisfying suitable hypotheses. As
for (1), (2) with h of the form (3), we refer to [10, 11, 12, 17, 19, 20, 21, 23], where
existence of solutions and phenomena such as blowup or stability of steady states are
investigated depending on the sign of σ, on r, and on the sensitivity χ.

We point out that our model differs from (1), (2), (3) with σ = −1, in that
the ordinary differential equation in (H1) is coupled to (H3) via the “intermediate”
equation (H2).

Solving (H3) or (2) classically requires that f have second order derivatives (with
respect to x) in some Lq-space. In our model the regularity of f is determined by m
for which one has a smoothing effect due to (H2). This induces the regularity that
allows us to derive an Lq-bound on p, which is sufficient to deduce global existence
for n ≤ 3 and without smallness assumptions on the initial data. As for (1)–(3), the
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1696 CHRISTOPH WALKER AND GLENN F. WEBB

regularity of f is determined by p. Thus, the second order derivatives of p should also
be in Lq. Local existence and uniqueness of “smooth” solutions for (1)–(3) can be
obtained using maximal regularity for the p-equation (2). However, global existence
then requires estimates on p that are stronger than Lq-estimates and which are far
from obvious.

In order to state our main result regarding the solvability of (H1)–(H6) we as-
sume that Ω is a bounded and smooth domain in R

n, n ≤ 3, and that the diffusion
coefficients α , β , and γ are positive constants. Concerning the data in (H1)–(H4) we
assume throughout that there exists some s > 0 such that{

a ∈ W 2
∞(Ω) , ∂νa = 0 on ∂Ω ,

b , d ∈ Cs(Ω̄) , g , e ∈ L∞(Ω) ,
(4)

and that all functions are nonnegative. We also assume that

χ ∈ C1(R+) , χ ≥ 0 , χ and χ′ are globally Lipschitz continuous.(5)

Furthermore, regarding � , θ , ω ∈ C(Ω̄ × R,R+) we suppose that, for some c0 > 0,

|φ(x, η) − φ(x, η̄)| ≤ c0 |η − η̄| , x ∈ Ω , η , η̄ ∈ R , φ ∈ {�, θ, ω} .(6)

Note that this implies, for some c > 0,

|φ(x, η)| ≤ c (1 + |η|) , x ∈ Ω , η ∈ R , φ ∈ {�, θ, ω} .(7)

To simplify the notation we put ϑ := �− θ.
For brevity of notation we set Lq := Lq(Ω) and W τ

q := W τ
q (Ω) for 1 ≤ q ≤ ∞

and τ ≥ 0. Moreover, we denote by W τ
q,B := W τ

q,B(Ω) the Sobolev–Slobodeckii spaces
including the Neumann boundary conditions, that is,

W τ
q,B :=

{{
u ∈ W τ

q ; ∂νu = 0
}
, τ > 1 + 1/q ,

W τ
q , 0 ≤ τ < 1 + 1/q .

If J ⊂ R
+ is an interval containing 0, we set J̇ := J \ {0}.

We shall prove then the following result.
Theorem 1.1. Let assumptions (4)–(6) be satisfied, and let (1 ∨ n/2) < q < ∞

and 2δ ∈ (0, 2) \ {1 + 1/q}. Given any nonnegative initial value

(f0,m0, p0, w0) ∈ W 2
q,B ×W 2δ

q,B × Lq × Lq

there exists a global nonnegative solution (f,m, p, w) to (H1)–(H6) such that

f ∈ C(R+,W 2
q,B) ∩ C1(Ṙ+,W 2

q,B) ,

m ∈ C(R+,W 2δ
q,B) ∩ C(Ṙ+,W 2

q,B) ∩ C1(Ṙ+, Lq) ,

p ∈ C(R+, Lq) ∩ C(Ṙ+,W 2
q,B) ∩ C1(Ṙ+, Lq) ,

w ∈ C(R+, Lq) ∩ C(Ṙ+,W 2
q,B) ∩ C1(Ṙ+, Lq) .

This solution satisfies

tη ‖p(t)‖W 2η
q

→ 0 and tλ ‖m(t)‖W 2
q
→ 0 as t → 0+(8)
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GLOBAL EXISTENCE FOR A HAPTOTAXIS MODEL 1697

for all (η, λ) such that

n/q < 2η < 2 , 2η ≥ 1 , (1 − δ) ∨ η ≤ λ < 1 ,(9)

and it is the only solution satisfying (8) for some (η, λ) as in (9).
Remarks 1.2. (a) Except for (H1), which lacks a smoothing effect due to diffusion,

the regularity assumptions on the initial values and the restriction on the integrability
index q seem to be fairly weak. In particular, we do not impose bounded initial values
or assume that q > n, and also the Sobolev regularity on m0 can be arbitrary low.

(b) The no-flux boundary condition on p in (H5) is correct from a modeling point
of view, since neither diffusion nor haptotaxis should change the tumor mass. Notice
that it reduces to a Neumann boundary condition ∂νp(t) = 0 provided that ∂νf(t) = 0.
The latter is guaranteed due to the imposed Neumann boundary conditions on f0 and
a. Thus, these assumptions decouple p and f on the boundary.

(c) The solution depends continuously on the initial value in the sense stated in
Proposition 3.1.

(d) The local existence and uniqueness statement of the theorem above is also
true for space dimensions n > 3 as it follows from the proof given below.

We state the following simplified version of the above theorem for the particular
case q > n.

Corollary 1.3. Let a, b, d, e, g be nonnegative constants and suppose (5), (6).
If q > n, then problem (H1)–(H6) has, for any nonnegative initial value

(f0,m0, p0, w0) ∈ X := W 2
q ×W 1

q ×W 1
q × Lq

such that ∂νf
0 = 0, a unique global nonnegative classical solution (f,m, p, w) in the

space C(R+, X).
A proof of Corollary 1.3 could be obtained by applying the general semigroup the-

ory for semilinear parabolic problems. However, we shall point out that Theorem 1.1
actually ensures existence and uniqueness of classical solutions under considerably
weaker assumptions on the integrability index q but also on the regularity of the ini-
tial values p0 and m0. Also note that any classical solution belonging to C(R+, X)
satisfies (8) for some (η, λ) as in (9). In this sense, the uniqueness (and existence)
result stated in Theorem 1.1 is more general than in Corollary 1.3.

The outline of this paper is as follows: In section 2 we collect some auxiliary
results which are used in the proof of local existence and uniqueness of solutions in
section 3. Section 4 is devoted to positivity of solutions, and in section 5 we prove
global existence. In section 6 some numerical examples are given in order to illustrate
the role of haptotaxis in spatial movement. In section 7 we summarize our results.

2. Preliminaries. In what follows, we denote for 1 < q < ∞ by Δ := Δq the
Laplace operator defined on W 2

q,B and observe that it generates a positive, strongly

continuous analytic semigroup {etΔ ; t ≥ 0} of contractions on Lq [1, 22]. Moreover,
we will use the inequality

‖etΔ‖L(W 2σ
q,B,W 2τ

q,B) ≤ c(T ) tσ−τ , 0 < t ≤ T ,(10)

which is true provided that 0 ≤ 2σ ≤ 2τ ≤ 2 with 2σ, 2τ �= 1 + 1/q, where c(T )
depends on the involved parameters. We also use the inequality

‖etΔ‖L(Lq,Lp) ≤ c(T ) t−(1/q−1/p)n/2 , t ∈ (0, T ] ,(11)

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

29
.1

73
.7

2.
87

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1698 CHRISTOPH WALKER AND GLENN F. WEBB

for 1 < q ≤ p ≤ ∞. Given ξ > 0 we then put Uξ(t) := etξΔ. Furthermore, for any

measurable function u : J̇ → Lq we set

Uξ � u(t) :=

∫ t

0

Uξ(t− s)u(s) ds , t ∈ J̇ ,

whenever these integrals exist. If E is a Banach space and μ ∈ R, we denote by
BCμ(J̇ , E) the Banach space of all functions u : J̇ → E such that

(
t → tμu(t)

)
is

bounded and continuous from J̇ into E, equipped with the norm

u → ‖u‖Cμ(J̇,E) := sup
t∈J̇

tμ ‖u(t)‖E .

We write Cμ(J̇ , E) for the closed linear subspace consisting of all u satisfying tμu(t) →
0 in E as t → 0+. Note that Cν((0, T ], E) ↪→ Cμ((0, T ], E) for ν ≤ μ and T > 0.

For later use we state the following auxiliary result on pointwise multiplication.
Lemma 2.1. Suppose that n/q < 2η with 2η ≥ 1 and let 0 < 2r < (s∧ 2η). Then

pointwise multiplication is a continuous mapping
(i) W 2η

q × Lq → Lq ,

(ii) W 2η−1
q ×W 1

q → Lq ,

(iii) Cs(Ω̄) ×W 2η
q → W 2r

q .
Proof. (i) follows from the embedding W 2η

q ↪→ L∞, while statements (ii) and (iii)
are easy consequences of [2, Thm. 4.1].

Evidently, given suitable functions f0 = f0(x) and m = m(x, t), the solution to
(H1) is

F1(m) := F1[f
0](m) :=

[
t → exp

(
−
∫ t

0

am(s)ds

)
f0

]
.

Note then that the gradient and the Laplacian take the form

∇F1(m)(t) = exp

(
−
∫ t

0

am(s)ds

) [
∇f0 −

∫ t

0

∇(am)(s)ds f0

]
(12)

and

ΔF1(m)(t) = exp

(
−
∫ t

0

am(s)ds

) [
Δf0 −

∫ t

0

Δ(am)(s)ds f0

+
∣∣∣ ∫ t

0

∇(am)(s)ds
∣∣∣2 f0 − 2

∫ t

0

∇(am)(s)ds · ∇f0

]
.

(13)

In particular, (12) warrants that ∂νF1(m)(t) = 0 provided ∂νf
0 = ∂νm(t) = 0 for all

t since a ∈ W 2
∞,B. Furthermore, F1 has the following properties.

Lemma 2.2. For 0 < T ≤ T0 put I := [0, T ]. If (1∨n/2) < q < ∞ and f0 ∈ W 2
q,B,

there holds
(i) F1(m) ∈ C1(I,W 2

q,B) for m ∈ C(I,W 2
q,B);

(ii) F1(m) ∈ C(I,W 2
q,B) for m ∈ Cμ(İ ,W 2

q,B) and μ < 1, and for R0 > 0 there
exists a constant k := k(T0, R0) > 0 such that

‖F1(m) − F1(m̄)‖C(I,W 2
q,B) ≤ k ‖f0‖W 2

q
T 1−μ ‖m− m̄‖Cμ(İ,W 2

q,B)

provided ‖m‖Cμ(İ,W 2
q,B) , ‖m̄‖Cμ(İ,W 2

q,B) ≤ R0.
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GLOBAL EXISTENCE FOR A HAPTOTAXIS MODEL 1699

Proof. (i) Fix m ∈ C(I,W 2
q,B) ↪→ C(I, L∞) and temporarily set F1 := F1(m).

Owing to Lemma 2.1, (4), and (13) we deduce (1 + Δ)F1 ∈ C(I, Lq), from which it
follows that F1 ∈ C(I,W 2

q,B) since ∂νF1 = 0. Clearly, this implies F1 ∈ C1(I,W 2
q,B)

owing to ∂tF1 = −amF1 and the fact that pointwise multiplication is a continuous
mapping from W 2

q,B ×W 2
q,B into W 2

q,B.

(ii) Given m, m̄ ∈ Cμ(İ ,W 2
q,B) with norm less than R0 > 0, we have∫ t

0

‖m(s)‖∞ ds ≤ c

∫ t

0

‖m(s)‖W 2
q

ds ≤ c(R0) t
1−μ , t ∈ I .

This yields for 0 ≤ t ≤ T

‖F1(m)(t) − F1(m̄)(t)‖Lq
≤ c(T0, R0)

∫ t

0

‖m(s) − m̄(s)‖∞ ds ‖f0‖Lq

≤ c(T0, R0) ‖f0‖Lq
T 1−μ ‖m− m̄‖Cμ(İ,W 2

q,B) .

Similarly, Lemma 2.1 and (13) entail

‖ΔF1(m)(t) − ΔF1(m̄)(t)‖Lq
≤ c(T0, R0) ‖f0‖W 2

q
T 1−μ ‖m− m̄‖Cμ(İ,W 2

q,B)

for 0 ≤ t ≤ T , and the assertion follows.
Lemma 2.3. Let 1 < q < ∞ , 2σ ∈ (0, 2) \ {1 + 1/q} and T, ξ > 0. Then
(i) Uξu := [t → Uξ(t)u] ∈ Cσ

(
(0, T ],W 2σ

q,B
)

for u ∈ Lq;

(ii) Uξu = [t → Uξ(t)u] ∈ C1−σ

(
(0, T ],W 2

q,B
)

for u ∈ W 2σ
q,B.

Proof. The proof of [4, Prop. 6] is easily adapted to the case (i). In much the
same way one shows (ii).

3. Local existence and uniqueness. In the following we use the abbreviations

S(m, p) := d p − bm ,

Q(f, p, w) := −∇ ·
(
pχ(f)∇f

)
+ ϑ(w) p ,

R(f, p, w) := − ew − ω(p)w + g f .

Here and below we denote by ϑ(w) and ω(p) the Nemitskii operators of ϑ(·, w) and
ω(·, p), respectively; that is, we set φ(u) := [x → φ(x, u(x))] for φ ∈ {ϑ, ω} and u :
Ω → R.

The proof of the existence and uniqueness statement of Theorem 1.1 is based on
the next result.

Proposition 3.1. Let 1 < q < ∞ and n/q < 2η ≤ 2ξ ≤ 2μ < 2 with 2η ≥ 1.
Given B ≥ 1 there exists T := T (B) > 0 such that, for any

u0 :=
(
f0,m0, p0, w0

)
∈ E := W 2

q,B ×W
2(1−μ)
q,B × Lq × Lq

with ‖u0‖E ≤ B, the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(t) = exp
(
−
∫ t

0
am(s)ds

)
f0 , t ∈ I ,

m(t) = Uα(t)m0 + Uα � S(m, p)(t) , t ∈ I ,

p(t) = Uβ(t) p0 + Uβ � Q(f, p, w)(t) , t ∈ I ,

w(t) = Uγ(t)w0 + Uγ � R(f, p, w)(t) , t ∈ I ,

(M)
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1700 CHRISTOPH WALKER AND GLENN F. WEBB

has a unique solution

u := (f,m, p, w) ∈ VT := C(I,W 2
q,B) × Cμ(İ ,W 2

q,B) × Cξ(İ ,W
2η
q,B) × C(I, Lq) ,

where I := [0, T ]. Moreover, the solution depends continuously on the initial value in
the sense that if ū ∈ VT denotes the solution corresponding to ū0 ∈ E with ‖ū0‖E ≤ B,
then ū → u in VT as ū0 → u0 in E.

Proof. Given T ∈ (0, 1] we put

WT := C
(
[0, T ],W 2

q,B
)
, XT := Cμ

(
(0, T ],W 2

q,B
)
,

YT := Cξ

(
(0, T ],W 2η

q,B
)
, ZT := C

(
[0, T ], Lq

)
,

so that VT = WT ×XT ×YT ×ZT . For u0 =
(
f0,m0, p0, w0

)
∈ E it then follows from

Lemma 2.3 that

V 0 :=
(
f0, Uαm

0, Uβp
0, Uγw

0
)
∈ VT .

Defining

F2(m, p) := Uαm
0 + Uα � S(m, p) ,

F3(f, p, w) := Uβp
0 + Uβ � Q(f, p, w) ,

F4(f, p, w) := Uγw
0 + Uγ � R(f, p, w) ,

and

F (u) := F (f,m, p, w) :=
(
F1(m), F2(m, p), F3(f, p, w), F4(f, p, w)

)
,

problem (M) can be recast as a fixed point problem of the form F (u) = u ∈ VT . In
order to solve this problem, we first recall that Lemma 2.2(ii) implies that there exists
for any given R0 > 0 a constant c(R0) > 0 with

‖F1(m) − F1(m̄)‖WT
≤ c(R0)T

1−μ ‖m− m̄‖XT
(14)

provided m, m̄ ∈ XT with ‖m‖XT
, ‖m̄‖XT

≤ R0 and ‖f0‖W 2
q,B

≤ R0. We fix r such

that 0 < 2r < (s ∧ 2η ∧ (1 + 1/q)), where s > 0 is given in (4). For m ∈ XT and
p ∈ YT we derive from Lemma 2.1(iii), (10), and (4)

‖Uα � S(m, p)(t)‖W 2
q
≤ c

∫ t

0

‖Uα(t− s)‖L(W 2r
q,B,W 2

q,B)

(
‖p(s)‖W 2η

q
+ ‖m(s)‖W 2

q

)
ds

≤ c tr−ξ B(r, 1 − ξ) ‖p‖YT
+ c tr−μ B(r, 1 − μ) ‖m‖XT

,

(15)

where B denotes the beta function. Therefore,

‖F2(m, p) − F2(m̄, p̄)‖XT
≤ c T r (‖p− p̄‖YT

+ ‖m− m̄‖XT
)(16)

for m, m̄ ∈ XT and p, p̄ ∈ YT . Next observe that

∇ ·
(
pχ(f)∇f

)
= pχ(f) Δf + χ(f)∇p · ∇f + pχ′(f) |∇f |2;
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GLOBAL EXISTENCE FOR A HAPTOTAXIS MODEL 1701

hence

‖∇ ·
(
pχ(f)∇f

)
‖Lq ≤ c ‖p‖W 2η

q
(1 + ‖f‖3

W 2
q
) , p ∈ W 2η

q,B , f ∈ W 2
q,B ,

by Lemma 2.1 and (5). Given f ∈ WT , p ∈ YT , and w ∈ ZT we thus compute,
using (10) and (7),

‖Uβ � Q(f, p, w)(t)‖W 2η
q

≤ c

∫ t

0

‖Uβ(t− s)‖L(Lq,W
2η
q,B)

{
‖p(s)‖W 2η

q

(
1 + ‖f(s)‖3

W 2
q

)
+

(
1 + ‖w(s)‖Lq

)
‖p(s)‖W 2η

q

}
ds

≤ c t1−η−ξ B(1 − η, 1 − ξ) ‖p‖YT

(
1 + ‖f‖3

WT
+ ‖w‖ZT

)
.

(17)

Similarly, for f, f̄ ∈ WT , p, p̄ ∈ YT , and w, w̄ ∈ ZT we obtain

‖F3(f, p, w) − F3(f̄ , p̄, w̄)‖YT
≤ c T 1−η ‖p‖YT

(
1 + ‖f‖WT

+ ‖f̄‖WT

)2 ‖f − f̄‖WT

+ c T 1−η
(
1 + ‖f̄‖3

WT
+ ‖w‖ZT

)
‖p− p̄‖YT

+ c T 1−η ‖p‖YT
‖w − w̄‖ZT

.

(18)

Given f, f̄ ∈ WT , p, p̄ ∈ YT , and w, w̄ ∈ ZT analogous computations show that

‖F4(f, p, w) − F4(f̄ , p̄, w̄)‖ZT
≤ c T 1−ξ

(
1 + ‖p̄‖YT

)
‖w − w̄‖ZT

+ c T 1−ξ ‖w‖ZT
‖p− p̄‖YT

+ c T ‖f − f̄‖WT
.

(19)

Combining (14), (16), (18), (19), and defining λ := (1− μ)∧ r ∧ (1− ξ) > 0 we find a
constant κ(R0) > 0 such that

‖F (u) − F (ū)‖VT
≤ κ(R0)T

λ
(
1 + ‖u‖VT

+ ‖ū‖VT

)
‖u− ū‖VT

,(20a)

‖F (u) − V 0‖VT
≤ κ(R0)T

λ
(
1 + ‖u‖VT

)
‖u‖VT

,(20b)

provided u = (f,m, p, w) , ū = (f̄ , m̄, p̄, w̄) ∈ VT are such that ‖m‖XT
, ‖m̄‖XT

≤ R0

and ‖f0‖W 2
q
≤ R0, where R0 > 0 and T ∈ (0, 1] are arbitrary. Put

K := 1 + sup
0<t≤1

(
tμ ‖Uα(t)‖L(W

2(1−μ)
q,B ,W 2

q,B)
+ tξ ‖Uβ(t)‖L(Lq,W

2η
q,B)

)
,

which is a finite constant according to (10), and let R0 := (1 + K)B for B ≥ 1 given.
Choose then T := T (B) ∈ (0, 1] such that

κ(R0) (1 + R0)R0 T
λ ≤ 1

2
and k(1, R0)B T 1−μ ≤ 1

4
,(21)

the constant k(1, R0) > 0 stemming from Lemma 2.2(ii). Notice that, in particular,
for u0 =

(
f0,m0, p0, w0

)
∈ E with ‖u0‖E ≤ B, there holds

‖V 0‖VT
≤ KB , V 0 =

(
f0, Uαm

0, Uβp
0, Uγw

0
)
.
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1702 CHRISTOPH WALKER AND GLENN F. WEBB

Denoting by BT the closed ball in VT with center V 0 and radius B, we hence have

‖u‖VT
≤ (1 + K)B = R0 , u ∈ BT .

Therefore, in view of (20a), (20b), and (21), the mapping F : BT → BT is a con-
traction (with contraction constant less than 1/2), which implies the existence of a
unique solution to problem (M) for any u0 =

(
f0,m0, p0, w0

)
∈ E with ‖u0‖E ≤ B.

If ū0 =
(
f̄0, m̄0, p̄0, w̄0

)
∈ E with ‖ū0‖E ≤ B is another initial value, there exists a

corresponding unique solution ū =
(
f̄ , m̄, p̄, w̄

)
∈ VT satisfying ‖ū‖VT

≤ R0. Defining

F̃ := (F2, F3, F4) and V̄ 0 :=
(
f̄0, Uαm̄

0, Uβ p̄
0, Uγw̄

0
)

we derive from (20a), (20b), and Lemma 2.2(ii) that

‖u− ū‖VT
≤ ‖F1[f

0](m) − F1[f̄
0](m̄)‖WT

+ ‖F̃ (u) − F̃ (ū)‖XT×YT×ZT

+ ‖Uα(m0 − m̄0)‖XT
+ ‖Uβ(p0 − p̄0)‖YT

+ ‖Uγ(w0 − w̄0)‖ZT

≤ k(1, R0)‖f0‖W 2
q,B

T 1−μ ‖m− m̄‖XT
+ k(1, R0) ‖m̄‖XT

‖f0 − f̄0‖W 2
q,B

+
1

2
‖u− ū‖VT

+ ‖V 0 − V̄ 0‖VT
.

But then, due to (21),

‖u− ū‖VT
≤ c(R0) ‖V 0 − V̄ 0‖VT

≤ c(R0)K‖u0 − ū0‖E ,

whence ū → u in VT as ū0 → u0 in E. This proves the proposition.
We now focus on the existence of a unique maximal solution to (H1)–(H6) enjoying

the regularity properties stated in Theorem 1.1.
Let (1∨n/2) < q < ∞ and 2δ ∈ (0, 2)\{1+1/q} be given. Fix η and λ such that

n/q < 2η < 2 with 2η ≥ 1 and (1 − δ) ∨ η ≤ λ < 1 and put (ξ, μ) := (η, λ). Then,
for

(
f0,m0, p0, w0

)
∈ W 2

q,B ×W 2δ
q,B × Lq × Lq, Proposition 3.1 ensures the existence

of T > 0 and a unique solution

u = (f,m, p, w) ∈ C([0, T ],W 2
q,B)×Cμ((0, T ],W 2

q,B)×Cξ((0, T ],W 2η
q,B)×C([0, T ], Lq)

to problem (M). As in (17),

‖Uβ � Q(f, p, w)(t)‖Lq ≤ c(T ) t1−ξ → 0 as t → 0+ ,

and therefore

p = Uβ p
0 + Uβ � Q(f, p, w) ∈ C([0, T ], Lq)

is a mild Lq-solution to (H3). From this and the identity

m = Uα m0 + Uα � S(m, p)

we obtain that m ∈ C([0, T ],W 2δ
q,B) is a mild Lq-solution to (H2). Clearly, w ∈

C([0, T ], Lq) is a mild Lq-solution to (H4).
Next we show that these mild solutions are actually classical solutions. First, we

fix ε ∈ (0, T ] and set I := [0, T − ε]. Then

fε := f(· + ε) ∈ C(I,W 2
q,B) , mε := m(· + ε) ∈ C(I,W 2

q,B) ,

pε := p(· + ε) ∈ C(I,W 2η
q,B) , wε := w(· + ε) ∈ C(I, Lq) .

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

29
.1

73
.7

2.
87

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



GLOBAL EXISTENCE FOR A HAPTOTAXIS MODEL 1703

Furthermore, Lemma 2.2(i) warrants fε ∈ C1(I,W 2
q,B) and thus, letting ε → 0+, we

obtain f ∈ C1((0, T ],W 2
q,B). Next, hε := S(mε, pε) ∈ C(I,W 2r

q,B) with r > 0 suffi-

ciently small by Lemma 2.1(iii). Therefore, observing that W 2r
q,B is a (real) interpola-

tion space between Lq and W 2
q,B (cf. [24]) and taking into account that mε is a mild

Lq-solution to the linear problem

Ṁ − αΔM = hε(t) , t ∈ İ , M(0) = mε(0) ∈ W 2
q,B ,

we conclude that mε ∈ C1(İ , Lq)∩C(I,W 2
q,B) since mild solutions to linear problems

are unique; see [3, II.Thm. 1.2.2]. Letting ε → 0+ we deduce that m is a classical
solution to (H2) possessing the same regularity properties as mε on (0, T ]. Next,
define jε := Q(fε, pε, wε) ∈ C(I, Lq) and notice that pε is a mild Lq-solution to the
linear problem

Ṗ − βΔP = jε(t) , t ∈ İ , P (0) = pε(0) ∈ W 2η
q,B .(22)

Thus, pε ∈ C(I,W 2σ
q,B) with 2η > 2σ > n/q and 2σ ≥ 1, where � := η − σ > 0 owing

to [3, II.Thm. 5.3.1]. Clearly, due to kε := R(fε, pε, wε) ∈ C(I, Lq) and (10) we have

wε = Uγ wε(0) + Uγ � kε ∈ C(I,W 2ν
q,B) , ν < 1 .

Applying again [3, II.Thm. 5.3.1] we obtain wε ∈ C(I, Lq). From (6) and the fact
that fε ∈ C1(I,W 2

q,B) and pε ∈ C(I,W 2σ
q,B) it follows that kε ∈ C(I, Lq); hence, as

above, wε ∈ C1(İ , Lq) ∩ C(İ ,W 2
q,B) by [3, II.Thm. 1.2.2], which ensures that w is

a classical solution to (H4) with the corresponding regularity properties. Moreover,
recalling that 2σ > n/q with 2σ ≥ 1 and invoking Lemma 2.1, we deduce jε ∈
C(I, Lq) thanks to (5). Due to [3, II.Thm. 1.2.2] and (22) this implies that pε
belongs to C1(İ , Lq) ∩ C(İ ,W 2

q,B), whence p ∈ C1((0, T ], Lq) ∩ C((0, T ],W 2
q,B) is a

classical solution to (H3).

Let us now prove that this solution is unique in the sense stated in Theorem 1.1.
Suppose therefore that there exist two solutions (f̃ , m̃, p̃, w̃) and (f̄ , m̄, p̄, w̄) to (H1)–
(H6) on some interval [0, T ] satisfying

f̃ , f̄ ∈ C
(
[0, T ],W 2

q,B
)
, w̃ , w̄ ∈ C

(
[0, T ], Lq

)
,

m̃ ∈ Cλ̃

(
(0, T ],W 2

q,B
)
, m̄ ∈ Cλ̄

(
(0, T ],W 2

q,B
)
,

p̃ ∈ Cη̃

(
(0, T ],W 2η̃

q,B
)
, p̄ ∈ Cη̄

(
(0, T ],W 2η̄

q,B
)

for some n/q < 2η̃ , 2η̄ < 2 with 2η̃ , 2η̄ ≥ 1 and λ̃ , λ̄ < 1. Defining

η := η̃ ∧ η̄ , ξ := η̃ ∨ η̄ , μ := λ̃ ∨ λ̄ ∨ ξ ∨ (1 − δ)

we obtain two solutions to (M) such that both m̃, m̄ belong to Cμ((0, T ],W 2
q,B) and

both p̃, p̄ belong to Cξ((0, T ],W 2η
q,B), where n/q < 2η ≤ 2ξ ≤ 2μ < 2 with 2η ≥ 1.

Making T smaller if necessary, Proposition 3.1 guarantees that (f̃ , m̃, p̃, w̃) coincides
with (f̄ , m̄, p̄, w̄) on [0, T ].
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1704 CHRISTOPH WALKER AND GLENN F. WEBB

Evidently, local uniqueness warrants that we may extend the solution (f,m, p, w)
constructed above to a maximal solution on an interval J := [0, t+). Since, according
to Proposition 3.1, the local existence time T > 0 can be chosen uniformly with
respect to initial values that are bounded in W 2

q,B ×W 2δ
q,B × Lq × Lq, we surely have

lim sup
t↗t+

∥∥(f(t),m(t), p(t), w(t)
)∥∥

W 2
q ×W 2δ

q ×Lq×Lq
= ∞(23)

in the case that t+ < ∞.
Summing up, we have shown thus far that problem (H1)–(H6) admits a maximal

solution being unique and possessing the regularity properties in the sense stated in
Theorem 1.1. Moreover, this solution satisfies (8) and, if t+ < ∞, then (23) also
holds.

Remark 3.2. Given p0 ∈ W 2η
q,B with n/q < 2η < 2 and 2η ≥ 1 there holds

p ∈ C(J,W 2η
q,B). In particular, one may choose 2η = 1 if q > n; see Corollary 1.3. This

readily follows by taking C([0, T ],W 2η
q,B) as state space for p instead of the weighted

space Cξ((0, T ],W 2η
q,B) in the above proof.

4. Positivity. Using ideas as in [18] we now show positivity of the solution
corresponding to positive initial values. Given(

f0,m0, p0, w0
)
∈ W 2

q,B ×W 2δ
q,B × Lq × Lq

such that f0 ≥ 0, m0 ≥ 0, p0 ≥ 0, and w0 ≥ 0 (a.e. on Ω) let (f,m, p, w) denote the
maximal solution on J constructed in the previous section. Then obviously f(t) ≥ 0
on Ω for t ∈ J .

First suppose that q > (n ∨ 2) and p0, w0 ∈ W 2
q,B. Fix T ∈ J̇ and n/q < 2σ < 1.

Then choose η ∈
(
1/2, 1 − σ

)
and observe that p ∈ Cη(J̇ ,W

2η
q,B) in view of (8).

Analogously to (17) it follows from Lemma 2.1 that

‖Uβ � Q(f, p, w)(t)‖W 2σ
q

≤ c(T ) t1−σ−η −→ 0 as t → 0+ ,

and consequently

p = Uβ p
0 + Uβ � Q(f, p, w) ∈ C([0, T ],W 2σ

q,B) ↪→ C([0, T ] × Ω̄) .

Similarly, there holds

w = Uγ w
0 + Uγ � R(f, p, w) ∈ C([0, T ],W 2σ

q,B) ↪→ C([0, T ] × Ω̄) ,

and thus, in particular,

ϑ(w) ∈ C([0, T ] × Ω̄) .(24)

According to [18, p. 451] there exist a function H ∈ C2(R) and a constant c0 > 0
such that H(z) = 0 for z ≥ 0 and H(z) > 0 for z < 0 and such that

0 ≤ H ′′(z) z2 ≤ c0 H(z) , z ∈ R ,

and

0 ≤ H ′(z) z ≤ c0 H(z) , z ∈ R .

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

29
.1

73
.7

2.
87

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



GLOBAL EXISTENCE FOR A HAPTOTAXIS MODEL 1705

Define M ∈ C1((0, T ]) ∩ C([0, T ]) as

M(t) :=

∫
Ω

H
(
p(t, x)

)
dx , t ∈ [0, T ] .

Owing to ∂νp(t) = ∂νf(t) = 0 we deduce from (H3) that

d

dt
M(t) =

∫
Ω

H ′(p)
(
βΔp−∇ ·

(
pχ(f)∇f

)
+ ϑ(w) p

)
dx

= −β

∫
Ω

H ′′(p) |∇p|2 dx +

∫
Ω

H ′′(p) pχ(f)∇p · ∇f dx

+

∫
Ω

H ′(p)ϑ(w) p dx.

Therefore, since

|pχ(f)∇p · ∇f | ≤ β

2
|∇p|2 +

1

2β
p2 χ(f)2 |∇f |2

we infer from (7) and the fact that both f and ∇f belong to C([0, T ]× Ω̄), from (24),
and the properties of the function H that

d

dt
M(t) ≤ c(T )M(t) , t ∈ (0, T ] .

Thus M(0) = 0 ensures M(t) = 0 for t ∈ [0, T ], that is, p(t) ≥ 0 on Ω for t ∈ [0, T ]. It
is then straightforward to prove that m(t) ≥ 0 and w(t) ≥ 0 on Ω for t ∈ [0, T ]. But
T > 0 was arbitrary, so the desired positivity follows.

Finally, to show positivity in the general case q > (1 ∨ n/2) we approximate
p0, w0 ∈ Lq by nonnegative smooth functions and use the continuous dependence of
the solution on the initial value provided by Proposition 3.1.

5. Global existence. It remains only to prove global existence. We denote by
(f,m, p, w) the maximal nonnegative solution on J = [0, t+) corresponding to the
nonnegative initial value(

f0,m0, p0, w0
)
∈ W 2

q,B ×W 2δ
q,B × Lq × Lq .

We first claim that it suffices to prove

sup
t∈J∩[0,T ]

‖p(t)‖Lq < ∞ , T > 0 ,(25)

in order to conclude that t+ = ∞. Indeed, suppose that (25) holds for any T > 0
and set JT := J ∩ [0, T ]. Replacing the solution by the shifted solution (fε,mε, pε, wε)
introduced in the existence proof in section 3, we may assume without loss of gener-
ality that all m, p,w belong to C(J,W 2

q,B) ∩ C1(J, Lq), in particular that m0 ∈ W 2
q,B.

Observe then that w ∈ L∞(JT , L∞) as it follows from (H4) since w(t) ≥ 0 and
‖f(t)‖∞ ≤ ‖f0‖∞. Next, since b ∈ L∞, we may choose λ > 0 sufficiently large
such that −(λ + b − αΔ) has bounded imaginary powers with angle strictly less
than π/2 (for instance, see [3, III.Ex. 4.7.3(d), III.Thm. 4.8.7]). Therefore, defining
n(t) := e−λtm(t) and noticing that

ṅ + (λ + b− αΔ)n = d e−λt p(t) =: z(t) , n(0) = m0 ∈ W 2
q,B ,
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1706 CHRISTOPH WALKER AND GLENN F. WEBB

it follows from [3, III.Thm. 4.10.7] that n ∈ Lq(JT ,W
2
q,B) since z ∈ L∞(JT , Lq) by

(25) and n(0) ∈ W 2
q,B. But then

∫ t

0

‖m(s)‖W 2
q

ds ≤ c(T ) , t ∈ JT ,

and we deduce from (13) that f ∈ L∞(JT ,W
2
q,B). Finally, owing to p ∈ L∞(JT , Lq),

(10), and Gronwall’s inequality we conclude from (H2) that m ∈ L∞(JT ,W
2δ
q,B). Con-

sequently, combining all the estimates on f,m, p, and w we see that the blowup
criterion (23) implies t+ = ∞ since T > 0 was arbitrary. Therefore, (25) is indeed
sufficient to conclude global existence.

To derive the desired Lq-bound on p we employ a change of variable of the form
p → p

φ(f) , where φ solves

φ′(z) =
χ(z)

β
φ(z) , z > 0 , φ(0) = 1 .

This device has been used in [11, 12, 14] for equations of the form (1), (2), (3) and
leads in our case to the equation in divergence form

d

dt

p

φ(f)
=

β

φ(f)
∇ ·

(
φ(f)∇ p

φ(f)

)
+ ϑ(w)

p

φ(f)
+

a

β
χ(f) f m

p

φ(f)
.(26)

Global existence is then an easy consequence of the following proposition, where the
basic idea of its proof is adapted from [11]. We point out here again that in our case,
the coupling of (H1) and (H3) via (H2) allows us to derive the a priori estimate for p
(which does not seem to be possible without a smallness condition on the initial value
in the case of (1), (2), (3) with σ = −1; see [11]).

Proposition 5.1. Suppose that ‖p(t)‖Lρ
≤ c(T ), t ∈ JT := J ∩ [0, T ], for some

ρ ∈ [1, q) and suppose there exists � ∈ (ρ, 2ρ ∧ q] such that

�

(
n

ρ
− 2

)
< 2

(
ρ− 1 +

2ρ

n

)
.(27)

Then ‖p(t)‖L� ≤ c(T ) for t ∈ JT .

Proof. We first observe that (27) allows to fix r > 1 such that

n�

n� + 2ρ
<

1

r
< 1 +

2

n
− 1

ρ
.(28)

If � ≥ 2, we set μ := 0; otherwise we fix μ ∈ (0, 1). Then we put pμ := p+ μ ≥ μ and
note that

∇
(

pμ
φ(f)

)/2

=
�

2

(
pμ
φ(f)

)/2−1

∇ pμ
φ(f)

by the chain rule. Hence
( pμ

φ(f)

)/2 ∈ W 1
2 since W 1

q ↪→ L2 due to q > n/2. Moreover,

∂ν
pμ

φ(f) = 0 owing to ∂νp = ∂νf = 0. Thus, given any Λ ∈ C2
(
(0,∞)

)
we derive

D
ow

nl
oa

de
d 

01
/0

1/
13

 to
 1

29
.1

73
.7

2.
87

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



GLOBAL EXISTENCE FOR A HAPTOTAXIS MODEL 1707

from (26)

d

dt

∫
Ω

φ(f) Λ

(
pμ
φ(f)

)
dx

= β

∫
Ω

Λ′
(

pμ
φ(f)

)
∇ ·

(
φ(f)∇ pμ

φ(f)

)
dx +

∫
Ω

Λ′
(

pμ
φ(f)

)
ϑ(w) p dx

+
1

β

∫
Ω

Λ′
(

pμ
φ(f)

)
amχ(f) f p dx − 1

β

∫
Ω

Λ

(
pμ
φ(f)

)
amχ(f) f φ(f) dx

+ μ

∫
Ω

Λ′
(

pμ
φ(f)

)
∇ ·

(
χ(f)∇f

)
dx +

μ

β

∫
Ω

Λ′
(

pμ
φ(f)

)
amχ(f) f dx

= −β

∫
Ω

Λ′′
(

pμ
φ(f)

)
φ(f)

∣∣∣∣∇ pμ
φ(f)

∣∣∣∣2 dx

+
1

β

∫
Ω

amχ(f) f

[
pΛ′

(
pμ
φ(f)

)
− φ(f) Λ

(
pμ
φ(f)

)]
dx

+

∫
Ω

Λ′
(

pμ
φ(f)

)
ϑ(w) p dx − μ

∫
Ω

Λ′′
(

pμ
φ(f)

)
χ(f)∇ pμ

φ(f)
· ∇f dx

+
μ

β

∫
Ω

Λ′
(

pμ
φ(f)

)
amχ(f) f dx

for t ∈ J . In particular, taking Λ(z) = z we have

d

dt

∫
Ω

φ(f)

(
pμ
φ(f)

)

dx ≤ − 4β
�− 1

�

∫
Ω

φ(f)

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx

+ S0

∫
Ω

m

(
pμ
φ(f)

)

dx

+ � ‖ϑ(w)‖∞
∫

Ω

φ(f)

(
pμ
φ(f)

)

dx

+ μ� (�− 1)‖χ(f)‖∞
∫

Ω

(
pμ
φ(f)

)−2 ∣∣∣∇ pμ
φ(f)

· ∇f
∣∣∣ dx

+ μS0

∫
Ω

m

(
pμ
φ(f)

)−1

dx

(29)

for t ∈ J , where

S0 :=
�− 1

β
‖a‖∞ sup

0<z<‖f0‖∞

(
z χ(z)φ(z)

)
< ∞

since ‖f(t)‖∞ ≤ ‖f0‖∞ and ‖ϑ(w)‖∞ < ∞ on JT due to w ∈ L∞(JT , L∞). Next,
we use the second inequality of (28), (11), the given Lρ-bound on p, and Gronwall’s
inequality to derive from (H2) that

‖m(t)‖Lr′ ≤ c(T ) , t ∈ JT ,
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1708 CHRISTOPH WALKER AND GLENN F. WEBB

where r′ denotes the dual exponent of r. Hence, taking into account that the first
inequality of (28) warrants the following version of the Gagliardo–Nirenberg inequality
(see [15, p. 37])

‖ · ‖2r
L2r

≤ c0 ‖ · ‖2(r−1)
L2ρ/�

‖ · ‖2
W 1

2
,

applying Young’s inequality, and using once again the given Lρ-bound on p, it follows
for ε > 0 that

S0

∫
Ω

m

(
pμ
φ(f)

)

dx ≤ c(ε)

∫
Ω

mr′ dx + ε

∫
Ω

(
pμ
φ(f)

)r

dx

≤ c(T, ε) + ε

∥∥∥∥∥
(

pμ
φ(f)

)/2
∥∥∥∥∥

2r

L2r

≤ c(T, ε) + ε c0

∥∥∥∥ pμ
φ(f)

∥∥∥∥(r−1)

Lρ

∥∥∥∥∥
(

pμ
φ(f)

)/2
∥∥∥∥∥

2

W 1
2

≤ c(T, ε) + c(T, ε)

∫
Ω

(
pμ
φ(f)

)

dx

+ ε c(T )

∫
Ω

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx .

We can estimate the last term in (29) similarly, since

μS0

∫
Ω

m

(
pμ
φ(f)

)−1

dx ≤ μ c(T, ε) + μ c(T, ε)

∫
Ω

(
pμ
φ(f)

)

dx

+ μ ε c(T )

∫
Ω

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx .

In the case that � < 2 we have by Young’s inequality for δ > 0

μ� (�− 1)‖χ(f)‖∞
∫

Ω

(
pμ
φ(f)

)−2 ∣∣∣∇ pμ
φ(f)

· ∇f
∣∣∣ dx

≤ δ μ
�2

4

∫
Ω

(
pμ
φ(f)

)−2 ∣∣∣∣∇ pμ
φ(f)

∣∣∣∣2 dx

+ μ c(δ)

∫
Ω

(
pμ
φ(f)

)−2

|∇f |2 dx

≤ μ δ

∫
Ω

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx + μ−1 c(δ)

∫
Ω

φ(f)−2|∇f |2 dx .

Therefore, due to φ(f) ≥ 1 and μ < 1, we infer from (29) by combining the above
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GLOBAL EXISTENCE FOR A HAPTOTAXIS MODEL 1709

estimates that for all t ∈ JT

d

dt

∫
Ω

φ(f)

(
pμ
φ(f)

)

dx ≤ c(T, ε) + c(T, ε)

∫
Ω

φ(f)

(
pμ
φ(f)

)

dx

+

(
ε c(T ) + δ − 4β

�− 1

�

) ∫
Ω

∣∣∣∣∣∇
(

pμ
φ(f)

)/2
∣∣∣∣∣
2

dx

+ μ−1 c(δ)

∫
Ω

φ(f)2− |∇f |2 dx .

(30)

We then choose ε > 0 and δ > 0 sufficiently small so that the term involving the
gradient of

pμ

φ(f) becomes negative. Recalling that ‖φ(f)‖∞ ≤ c
(
‖f0‖∞

)
on JT , that

∇f(t) ∈ L2, and that p ∈ C1(J, Lq) we may then let μ → 0+ and use Lebesgue’s
theorem to obtain

d

dt

∫
Ω

φ(f)

(
p

φ(f)

)

dx ≤ c(T ) + c(T )

∫
Ω

φ(f)

(
p

φ(f)

)

dx

for all t ∈ JT since 1 < � ≤ q. Thus, we conclude ‖p(t)‖L� ≤ c(T ) for t ∈ JT .
We are now in a position to prove that indeed J = R

+. Since p is nonneg-
ative, ‖ϑ(w(t))‖∞ ≤ c(T ), and ∂νp(t) = ∂νf(t) = 0 for t ∈ JT it follows that
‖p(t)‖L1 ≤ c(T ), t ∈ JT , by integrating (H3). Therefore, we may apply Proposi-
tion 5.1 successively to derive ‖p(t)‖Lq

≤ c(T ) for t ∈ JT ; hence J = R
+ according to

(25). Consequently, the proof of Theorem 1.1 is complete.

6. Numerical examples. We illustrate the theoretical results above with nu-
merical examples (a numerical treatment of a more general model is given in [7]). The
parameters for the example are chosen for illustrative purposes.

The region Ω is [0, 6] × [0, 6] ⊂ R
2, the parameters are a(x) ≡ 5.0, α = .01,

d(x) ≡ 1.0, b(x) ≡ 1.0, β = .01, χ(f) ≡ 0.0, or χ(f) ≡ 0.4, θ(x,w) ≡ 0.1, �(x,w) =
2.0w/(1.0 + w), γ = 0.1, e(x) ≡ 1.0, ω(x, p) = 2.0 p/(1.0 + p), g(x) ≡ 5.0, and the
initial conditions are

f0(x) = 0.05 cos
(
(10.0π/36.0)x2

1

)
sin

(
(13.0π/72.0)x2

2

)
+ 0.3 ,

p0(x) = 5.0 max
{
0.3 − (x1 − 3.0)2 − (x2 − 3.0)2 , 0.0

}
,

m0(x) = p0(x), and w0(x) = 4.0 f0(x), where x = (x1, x2). The normalized tumor
density is initially distributed symmetrically in a circle. The normalized extracellular
matrix density is immobile and heterogeneous above a uniform background value.
The haptotactic parameter χ is an indicator of the relative strength of cell-matrix
adhesion, and the value of χ increases through successive mutations of the tumor cell
lines, as tumor cells gain greater capacity to invade the surrounding bound substrate
[5]. We provide two choices for the haptotaxis parameter χ to demonstrate this
increase in χ. In Figures 1, 2, 3 the value of χ is 0.0, so that all movement of cells is
due only to cell motility. In Figures 4, 5, 6 the value of χ is 0.4, so that movement of
cells is due to both cell motility and haptotactic directed attraction. The simulations
demonstrate that haptotaxis produces a profound distinction in the spatial behavior
in the two cases. Without haptotaxis the tumor expands slowly and symmetrically
(Figures 1 and 2) as the total population declines (Figure 3). With haptotaxis the
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Fig. 1. The normalized tumor cell density for various times in the case without haptotaxis
(χ = 0.0). The tumor slowly expands nearly symmetrically as it decreases in total mass. The
interior of the tumor becomes necrotic as tumor cells consume and exhaust the supply of oxygen
furnished by the extracellular matrix.
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Fig. 2. The density plots in the (x1, x2)-coordinate system of the tumor cell distributions in
Figure 1 (χ = 0.0).D
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Fig. 3. The total populations in the case without haptotaxis (χ = 0.0):
∫
Ω p(x, t)dx,∫

Ω f(x, t)dx,
∫
Ω m(x, t)dx,

∫
Ω w(x, t)dx as functions of time. The total tumor mass eventually

shrinks to a very low value.
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Fig. 4. The normalized tumor cell density for various times in the case with haptotaxis (χ =
0.4). The tumor expands more rapidly and asymmetrically as it increases in total mass.

tumor spreads much more rapidly and asymmetrically (Figures 4 and 5) as the total
tumor cell population increases (Figure 6) for a time. The distinction of the two
cases demonstrates the importance of haptotaxis in the ability of tumors to invade
surrounding tissue.

7. Summary. In Theorem 1.1 we have proven the existence of unique classi-
cal global solutions to the model of tumor growth (H1)–(H6). The model describes
the spatial invasion of a tumor mass into its surrounding extracellular matrix. A
key feature of the model is that the migration of tumor cells is due primarily to
haptotaxis-directed movement. The interpretation of haptotaxis in tumor growth
is that cell movement is controlled by the differential strengths of cell-cell adhesion
gradients. Haptotaxis differs from chemotaxis in that the directed migration of the
tumor cells toward concentrations of the extracellular macromolecules is mediated by
a diffusive enzyme produced by the tumor cells. This enzyme degrades the matrix
macromolecules, which produce the oxygen essential for tumor growth, and thus alters
patterns of tumor movement and proliferation. The haptotaxis process in the model
produces technical complications, but also yields the regularity of solutions essential
in the analysis. We have demonstrated the role of haptotaxis in two numerical exam-
ples. In the first example, without haptotaxis, the only spatial movement of tumor
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Fig. 5. The density plots in the (x1, x2)-coordinate system of the tumor cell distributions in
Figure 4 (χ = 0.4).
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Fig. 6. The total populations in the case with haptotaxis (χ = 0.4):
∫
Ω p(x, t)dx,

∫
Ω f(x, t)dx,∫

Ω m(x, t)dx,
∫
Ω w(x, t)dx as functions of time. The total tumor mass grows for an interval of time.

cells is due to cell motility modeled by diffusion. In this example the tumor invades
slowly and decreases in total tumor mass. In the second example, with all parame-
ters the same as in the first example, but with the addition of haptotaxis, the tumor
invades more rapidly and with increasing total tumor mass. Both examples show the
characteristic interior necrosis of tumor cells due to exhaustion of the oxygen supply,
but the effect is much more pronounced with haptotaxis. The utilization of oxygen by
the tumor cell population is critical in understanding the distinction of the two exam-
ples. If the oxygen concentration is constant in time, then the evolution of the total
tumor mass is independent of haptotaxis. If the oxygen concentration evolves in time
due to tumor consumption and degradation of its source, then haptotaxis-directed
spatial migration enables a more efficient utilization of the environmental resources
and results in a more aggressive invasion of the tumor into the surrounding tissue.
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