

Author: SoftTech-IT
Software Framework: Flutter

Application For: Manyvendor eCommerce & Multi-
vendor CMS

Provided by: codecanyon

2020 © All Rights Reserved @ SoftTech-IT

Manyvendor eCommerce CMS

Customer Flutter App

Documentation

Index

 Contents:

 Introduction

 Prerequisites

 Syncing Manyvendor e-Commerce Customer Flutter App with
Manyvendor eCommerce & Multi-vendor CMS

 Build the APK file

 Build for iOS

 Distribution

o Manual Distribution

o Publishing on Google Play
o Publishing on App Store iOS

 Source code Structure

 Change Apps Icon

 Introduction
o Welcome to the documentation of Manyvendor e-Commerce Customer

Mobile application. The reader should pay a bit more attention while reading

this documentation.

 Prerequisites
o For running the application, Admin has to fill some prerequisites.

Like:

 Admin should have Manyvendor eCommerce & Multi-vendor CMS Web

Application hosted on a live server.

 The web application must be in the latest version always.

 eCommerce Mode must be activated in the web application to

run this Manyvendor eCommerce Customer Flutter App

 Syncing Manyvendor eCommerce Customer Flutter
App with Manyvendor eCommerce & Multi-vendor
CMS

o If the admin does have the Manyvendor eCommerce & Multi-vendor

CMS web application, he can sync the mobile app now.

o To run this customer flutter app-admin must be activated eCommerce in

Manyvendor eCommerce & Multi-vendor CMS web application.

o Download the flutter app from code canyon.

Install flutter following all instructions on your
platform from this link - https://flutter.dev/docs/get-

started/install

Or Follow this for windows,

 To install and run Flutter, your development environment must meet these minimum
requirements:

 Operating Systems: Windows 7 SP1 or later (64-bit), x86-64 based

 Disk Space: 1.32 GB (does not include disk space for IDE/tools).

 Tools: Flutter depends on these tools being available in your environment.
o Windows PowerShell 5.0 or newer (this is pre-installed with Windows 10)
o Git for Windows 2.x, with the Use Git from the Windows Command

Prompt option.
 If Git for Windows is already installed, make sure you can

run git commands from the command prompt or PowerShell.
 Download the following installation bundle to get the latest stable release

of the Flutter SDK this link:

Update your path

https://codecanyon.net/item/manyvendor-ecommerce-multivendor-cms/28474254
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell
https://git-scm.com/download/win
https://flutter.dev/docs/get-started/install/windows

 If you wish to run Flutter commands in the regular Windows console(CMD), take these
steps to add Flutter to the PATH environment variable:

 From the Start search bar, enter „env‟ and select Edit environment variables for your
account.

 Under User variables check if there is an entry called Path:
o If the entry exists, append the full path to flutter\bin using; as a separator from

existing values.

o If the entry doesn‟t exist, create a new user variable named Path with the full path
to flutter\bin as its value.

 You have to close and reopen any existing console windows for these changes to take
effect.

 Follow this image

Run flutter doctor

 From a console window(CMD) that has the Flutter directory in the path (see above), run
the following command to see if there are any platform dependencies you need to
complete the setup:

 C:\src\flutter>flutter doctor

 This command checks your environment and displays a report of the status of your Flutter
installation. Check the output carefully for other software you might need to install or
further tasks to perform (shown in bold text).

Install Android Studio

 Download and install Android Studio.

 Start Android Studio, and go through the „Android Studio Setup Wizard‟. This installs the
latest Android SDK, Android SDK Command-line Tools, and Android SDK Build-Tools,
which are required by Flutter when developing for Android.

 After successfully install android studio you mast me install Dart and Flutter plugins in
android studio belong this image

https://developer.android.com/studio

Set up your Android device
 To prepare to run and test your Flutter app on an Android device, you need an

Android device running Android 4.1 (API level 16) or higher.
 Enable Developer Options and USB debugging on your device. Detailed instructions

are available in the Android documentation.

 Windows-only: Install the Google USB Driver.

 Using a USB cable, plug your phone into your computer. If prompted on your device,
authorize your computer to access your device.

 In the terminal, run the flutter devices command to verify that Flutter recognizes your
connected Android device. By default, Flutter uses the version of the Android SDK where
your ADB tool is based. If you want Flutter to use a different installation of the Android
SDK, you must set the ANDROID_SDK_ROOT environment variable to that installation
directory.

Set up the Android emulator
 To prepare to run and test your Flutter app on the Android emulator, follow these steps:

 Enable VM acceleration on your machine.

 Follow image like this

https://developer.android.com/studio/debug/dev-options
https://developer.android.com/studio/run/win-usb
https://developer.android.com/studio/run/emulator-acceleration

 Launch Android Studio, click the AVD Manager icon, and select Create Virtual
Device…

o In older versions of Android Studio, you should instead launch Android Studio >
Tools > Android > AVD Manager and select Create Virtual Device….
(The Android submenu is only present when inside an Android project.)

o If you do not have a project open, you can choose Configure > AVD
Manager and select Create Virtual Device…

 Choose a device definition and select Next.

 Select one or more system images for the Android versions you want to emulate, and
select Next. An x86 or x86_64 image is recommended.

 Under Emulated Performance, select Hardware - GLES 2.0 to enable hardware
acceleration.

 Verify the AVD configuration is correct, and select Finish.
o For details on the above steps, see Managing AVDs.

 In Android Virtual Device Manager, click Run in the toolbar. The emulator starts up and
displays the default canvas for your selected OS version and device.

Follow this images

https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/managing-avds

 Or Follow this macOS

System requirements
 To install and run Flutter, your development environment must meet these minimum

requirements:

 Operating Systems: macOS (64-bit)

 Disk Space: 2.8 GB (does not include disk space for IDE/tools).

 Tools: Flutter depends on these command-line tools being available in your environment.
o bash
o curl
o git 2.x
o mkdir
o rm
o unzip
o which

 Get the Flutter SDK
 Download the following installation bundle to get the latest stable release of the Flutter

SDK link:

 For other release channels, and older builds, see the SDK releases page.

$ cd ~/development
$ unzip ~/Downloads/flutter_macos_1.22.4-stable.zip

o If you don‟t want to install a fixed version of the installation bundle, you can skip
steps 1 and 2. Instead, get the source code from the Flutter repo on GitHub with
the following command:

$ git clone https://github.com/flutter/flutter.git
o You can also change branches or tags as needed. For example, to get just the

stable version:

 $ git clone https://github.com/flutter/flutter.git -b stable --depth 1

https://flutter.dev/docs/get-started/install/macos
https://flutter.dev/docs/development/tools/sdk/releases
https://github.com/flutter/flutter

 Add the flutter tool to your path:

$ export PATH="$PATH:`pwd`/flutter/bin"
o This command sets your PATH variable for the current terminal window only. To

permanently add Flutter to your path, see Update your path.

 Optionally, pre-download development binaries:
o The flutter tool downloads platform-specific development binaries as needed. For

scenarios where pre-downloading these artifacts is preferable (for example, in
hermetic build environments, or with intermittent network availability), iOS and
Android binaries can be downloaded ahead of time by running:

$ flutter precache
o For additional download options, see flutter help precache.

 You are now ready to run Flutter commands!

Run flutter doctor
 Run the following command to see if there are any dependencies you need to

install to complete the setup (for verbose output, add the -v flag):

$ flutter doctor

Update your path
 You can update your PATH variable for the current session at the command line,

as shown in Get the Flutter SDK. You‟ll probably want to update this variable

permanently, so you can run flutter commands in any terminal session.

 The steps for modifying this variable permanently for all terminal sessions are
machine-specific. Typically you add a line to a file that is executed whenever you
open a new window. For example:

 Determine the directory where you placed the Flutter SDK. You need this in Step 3.

 Open (or create) the rc file for your shell. Typing echo $SHELL in your Terminal tells you

which shell you‟re using. If you‟re using Bash,

edit $HOME/.bash_profile or $HOME/.bashrc. If you‟re using Z shell,

edit $HOME/.zshrc. If you‟re using a different shell, the file path and filename will be

different on your machine.

 Add the following line and change [PATH_TO_FLUTTER_GIT_DIRECTORY] to be the
path where you cloned Flutter‟s git repo:

$ export PATH="$PATH:[PATH_TO_FLUTTER_GIT_DIRECTORY]/flutter/bin"

 Run source $HOME/.<rc file> to refresh the current window, or open a new terminal

window to automatically source the file.

 Verify that the flutter/bin directory is now in your PATH by running:

$ echo $PATH

o Verify that the flutter command is available by running:

$ which flutter

https://flutter.dev/docs/get-started/install/macos#update-your-path
https://flutter.dev/docs/get-started/install/macos#get-sdk

Platform setup
 macOS supports developing Flutter apps in iOS, Android, and the web (technical

preview release). Complete at least one of the platform setup steps now, to be
able to build and run your first Flutter app.

iOS setup Install Xcode
 To develop Flutter apps for iOS, you need a Mac with Xcode installed.

 Install the latest stable version of Xcode (using web download or the Mac App Store).

 Configure the Xcode command-line tools to use the newly-installed version of Xcode by
running the following from the command line:

$ sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer
$ sudo xcodebuild -runFirstLaunch

o This is the correct path for most cases, when you want to use the latest version of
Xcode. If you need to use a different version, specify that path instead.

 Make sure the Xcode license agreement is signed by either opening Xcode once and
confirming or running sudo xcodebuild -license from the command line.

 Versions older than the latest stable version may still work, but are not recommended for
Flutter development. Using old versions of Xcode to target bitcode is not supported, and
is likely not to work.

 With Xcode, you‟ll be able to run Flutter apps on an iOS device or on the simulator.

Set up the iOS simulator
 To prepare to run and test your Flutter app on the iOS simulator, follow these steps:

 On your Mac, find the Simulator via Spotlight or by using the following command:

$ open -a Simulator

 Make sure your simulator is using a 64-bit device (iPhone 5s or later) by checking the
settings in the simulator‟s Hardware > Device menu.

 Depending on your development machine‟s screen size, simulated high-screen-density
iOS devices might overflow your screen. Grab the corner of the simulator and drag it to
change the scale. You can also use the Window > Physical Size or Window > Pixel
Accurate options if your computer‟s resolution is high enough.

o If you are using a version of Xcode older than 9.1, you should instead set the
device scale in the Window > Scale menu.

 Deploy to iOS devices
 To deploy your Flutter app to a physical iOS device you‟ll need to set up physical device

deployment in Xcode and an Apple Developer account. If your app is using Flutter
plugins, you will also need the third-party CocoaPods dependency manager.

 You can skip this step if your apps do not depend on Flutter plugins with native iOS
code. Install and set up CocoaPods by running the following commands:

$ sudo gem install cocoapods

o Note: The default version of Ruby requires sudo to install the CocoaPods
gem. If you are using a Ruby Version manager, you may need to run

without sudo.

 Follow the Xcode signing flow to provision your project:
o Open the default Xcode workspace in your project by running open

ios/Runner.xcworkspace in a terminal window from your Flutter project directory.

https://developer.apple.com/xcode/
https://itunes.apple.com/us/app/xcode/id497799835
https://flutter.dev/docs/development/packages-and-plugins/developing-packages#types
https://guides.cocoapods.org/using/getting-started.html#installation

o Select the device you intend to deploy to in the device drop-down menu next to
the run button.

o Select the Runner project in the left navigation panel.
o In the Runner target settings page, make sure your Development Team is

selected. The UI varies depending on your version of Xcode.
 For Xcode 10, look under General > Signing > Team.
 For Xcode 11 and newer, look under Signing & Capabilities > Team.
 When you select a team, Xcode creates and downloads a Development

Certificate, registers your device with your account, and creates and
downloads a provisioning profile (if needed).

 To start your first iOS development project, you might need to sign into
Xcode with your Apple
ID.

 Development and testing is supported for any Apple ID. Enrolling in the
Apple Developer Program is required to distribute your app to the App
Store. For details about membership types, see Choosing a Membership.

 The first time you use an attached physical device for iOS development,
you need to trust both your Mac and the Development Certificate on that
device. Select Trust in the dialog prompt when first connecting the iOS
device to your Mac.

 Then, go to the Settings app on the iOS device, select General >

Device Management and trust your Certificate. For first time users,

https://developer.apple.com/support/compare-memberships

you may need to select General > Profiles > Device
Management instead.

 If automatic signing fails in Xcode, verify that the project‟s General >
Identity > Bundle Identifier value is

unique.

 Start your app by running flutter run or clicking the Run button in Xcode.

Android setup
 Note: Flutter relies on a full installation of Android Studio to supply its Android platform

dependencies. However, you can write your Flutter apps in a number of editors; a later step

discusses that.

Install Android Studio

 Download and install Android Studio.

 Start Android Studio, and go through the „Android Studio Setup Wizard‟. This installs the
latest Android SDK, Android SDK Command-line Tools, and Android SDK Build-Tools,
which are required by Flutter when developing for Android.

Set up your Android device
 To prepare to run and test your Flutter app on an Android device, you need an

Android device running Android 4.1 (API level 16) or higher.
 Enable Developer options and USB debugging on your device. Detailed instructions

are available in the Android documentation.

 Windows-only: Install the Google USB Driver.

 Using a USB cable, plug your phone into your computer. If prompted on your device,
authorize your computer to access your device.

https://developer.android.com/studio
https://developer.android.com/studio/debug/dev-options
https://developer.android.com/studio/run/win-usb

 In the terminal, run the flutter devices command to verify that Flutter recognizes your
connected Android device. By default, Flutter uses the version of the Android SDK where
your adb tool is based. If you want Flutter to use a different installation of the Android
SDK, you must set the ANDROID_SDK_ROOT environment variable to that installation
directory.

Set up the Android emulator
 To prepare to run and test your Flutter app on the Android emulator, follow these

steps:
 Enable VM acceleration on your machine.

 Launch Android Studio, click the AVD Manager icon, and select Create Virtual
Device…

o In older versions of Android Studio, you should instead launch Android Studio >
Tools > Android > AVD Manager and select Create Virtual Device….
(The Android submenu is only present when inside an Android project.)

o If you do not have a project open, you can choose Configure > AVD
Manager and select Create Virtual Device…

 Choose a device definition and select Next.

 Select one or more system images for the Android versions you want to emulate, and
select Next. An x86 or x86_64 image is recommended.

 Under Emulated Performance, select Hardware - GLES 2.0 to enable hardware
acceleration.

 Verify the AVD configuration is correct, and select Finish.
o For details on the above steps, see Managing AVDs.

 In Android Virtual Device Manager, click Run in the toolbar. The emulator starts up and
displays the default canvas for your selected OS version and device.

 Download the Android Studio or vs code. You can follow this link
https://youtu.be/YPKYT1buIVU

 Open the downloaded mobile app with Android
Studio/VSCode ide.

 Follow this images,

https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/emulator-acceleration
https://developer.android.com/studio/run/managing-avds
https://youtu.be/YPKYT1buIVU

 This way open source_code project

Goto File > setting > Languages & Frameworks > Flutter save the flutter
SDK path properly. If every thing is ok click the ok button

Open the pubspec.yaml file - Click the Pub get, after click pubget update
all package and sync the project or packages

 Open the file name “helper.dart”. Which is located at

“lib/helper”.

 Change appName from Line 19

 Go to line number 23.

 You will find a variable declared called “URL”

 Provide your hosted Manyvendor eCommerce & Multi-Vendor

CMS application on the placeholder “Follow the picture”.

Also, Change the app name from here android: label follows this picture.

 Your app name and android label name must be the same.

 Check if everything is right.

If all setup is perfect, press Flutter doctor in top. If all is ok in flutter setup on your

pc show the console success belong this image

Open the android Emulator and click the play icon for run the project in your pc.

If All is ok project run in your emulator.

No Enjoy You successfully done to run your Flutter Application,

Build the application For Release:

o Change Android Package Name Follow this link. Or see this video
https://youtu.be/BhpmHlN2Kjg

o Change Application Launcher Icon, Follow this link.

o Build the app follow this for the

 Android link,

Build and release an Android app

 During a typical development cycle, you test an app using flutter run at the
command line, or by using the Run and Debug options in your IDE. By default,
Flutter builds a debug version of your app.

 When you‟re ready to prepare a release version of your app, for example,
to publish to the Google Play Store, this page can help. Before publishing, you
might want to put some finishing touches on your app. This page covers the
following topics:

 Adding a launcher icon

 Signing the app

 Shrinking your code with R8

https://medium.com/@skyblazar.cc/how-to-change-the-package-name-of-your-flutter-app-4529e6e6e6fc
https://youtu.be/BhpmHlN2Kjg
https://youtu.be/P83AW4ITTAg
https://flutter.dev/docs/deployment/android
https://developer.android.com/distribute/googleplay/start
https://flutter.dev/docs/deployment/android#adding-a-launcher-icon
https://flutter.dev/docs/deployment/android#signing-the-app
https://flutter.dev/docs/deployment/android#shrinking-your-code-with-r8

 Reviewing the app manifest

 Reviewing the build configuration

 Building the app for release

 Publishing to the Google Play Store

 Updating the app‟s version number

 Android release FAQ

Adding a launcher icon
 When a new Flutter app is created, it has a default launcher icon. To customize

this icon, you might want to check out the flutter_launcher_icons package.

 Alternatively, you can do it manually using the following steps:

 Review the Material Design product icons guidelines for icon design.

 In the <app dir>/android/app/src/main/res/ directory, place your icon files in

folders named using configuration qualifiers. The default mipmap- folders
demonstrate the correct naming convention.

 In AndroidManifest.xml, update the application tag‟s android:icon attribute to

reference icons from the previous step (for example, <application

android:icon="@mipmap/ic_launcher" ...).

 To verify that the icon has been replaced, run your app, and inspect the app icon
in the Launcher.

Signing the app
 To publish on the Play Store, you need to give your app a digital signature. Use

the following instructions to sign your app.

Create a Keystore
 If you have an existing keystore, skip to the next step. If not, create one by

running the following at the command line:

 On Mac/Linux, use the following command:

keytool -genkey -v -keystore ~/key.jks -keyalg RSA -keysize 2048 -

validity 10000 -alias key

 On Windows, use the following command:

keytool -genkey -v -keystore c:\Users\USER_NAME\key.jks -storetype JKS -

keyalg RSA -keysize 2048 -validity 10000 -alias key

 This command stores the key.jks file in your home directory. If you want to store

it elsewhere, change the argument you pass to the -

keystore parameter. However, keep the keystore file private; don’t check it

into public source control!

Reference the keystore from the app
 Create a file named <app dir>/android/key.properties that contains a

reference to your keystore:
 storePassword=<password from previous step>

 keyPassword=<password from previous step>

 keyAlias=key

 storeFile=<location of the key store file, such as /Users/<user

name>/key.jks>

https://flutter.dev/docs/deployment/android#reviewing-the-app-manifest
https://flutter.dev/docs/deployment/android#reviewing-the-build-configuration
https://flutter.dev/docs/deployment/android#building-the-app-for-release
https://flutter.dev/docs/deployment/android#publishing-to-the-google-play-store
https://flutter.dev/docs/deployment/android#updating-the-apps-version-number
https://flutter.dev/docs/deployment/android#android-release-faq
https://pub.dev/packages/flutter_launcher_icons
https://material.io/design/iconography/
https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources
https://developer.android.com/guide/topics/manifest/application-element

 Warning: Keep the key.properties file private; don’t check it into public source

control.

Configure signing in Gradle
 Configure signing for your app by editing the <app

dir>/android/app/build.gradle file.

 Add code before android block:

android {

...

}

With the keystore information from your properties file:

def keystoreProperties = new Properties()

def keystorePropertiesFile = rootProject.file('key.properties')

if (keystorePropertiesFile.exists()) {

keystoreProperties.load(new

FileInputStream(keystorePropertiesFile))

}

android {

...

}

o Load the key.properties file into the keystoreProperties object.

 Add code before buildTypes block:

buildTypes {

release {

// TODO: Add your own signing config for the release build.

// Signing with the debug keys for now,

// so `flutter run --release` works.

signingConfig signingConfigs.debug

}

}

With the signing configuration info:

signingConfigs {

release {

keyAlias keystoreProperties['keyAlias']

keyPassword keystoreProperties['keyPassword']

storeFile keystoreProperties['storeFile']

file(keystoreProperties['storeFile']) : null

storePassword keystoreProperties['storePassword']

}

}

buildTypes {

release {

signingConfig signingConfigs.release

}

}

o Configure the signingConfigs block in your module‟s build.gradle file.

 Release builds of your app will now be signed automatically.

 Note: You may need to run flutter clean after changing the gradle file. This prevents

cached builds from affecting the signing process.

 For more information on signing your app, see Sign your app on
developer.android.com.

https://developer.android.com/studio/publish/app-signing.html#generate-key

Shrinking your code with R8
 R8 is the new code shrinker from Google, and it‟s enabled by default when you

build a release APK or AAB. To disable R8, pass the --no-shrink flag to flutter

build apk or flutter build appbundle.

 Note: Obfuscation and minification can considerably extend compile time of the Android

application.

Reviewing the app manifest
 Review the default App Manifest file, AndroidManifest.xml, located in <app

dir>/android/app/src/main and verify that the values are correct, especially the
following:

 application

Edit the android:label in the application tag to reflect the final name of the

app.

 uses-permission

Add the android.permission.INTERNET permission if your application code

needs Internet access. The standard template does not include this tag but allows
Internet access during development to enable communication between Flutter
tools and a running app.

Reviewing the build configuration
 Review the default Gradle build file file, build.gradle, located in <app

dir>/android/app and verify the values are correct, especially the following

values in the defaultConfig block:

 applicationId Specify the final, unique (Application Id)appid

 versionCode & versionName

Specify the internal app version number, and the version number display string.

You can do this by setting the version property in the pubspec.yaml file. Consult

the version information guidance in the versions documentation.

 minSdkVersion, compilesdkVersion, & targetSdkVersion

Specify the minimum API level, the API level on which the app was compiled, and
the maximum API level on which the app is designed to run. Consult the API level

section in the versions documentation for details. buildToolsVersion

Specify the version of Android SDK Build Tools that your app uses. Alternatively,
you can use the [Android Gradle Plugin] in Android Studio, which will
automatically import the minimum required Build Tools for your app without the
need for this property.

Building the app for release
 You have two possible release formats when publishing to the Play Store.
 App bundle (preferred)

 APK

 Note: The Google Play Store prefers the app bundle format. For more information,

see Android App Bundle and About Android App Bundles.

 Warning: Recently, the Flutter team has received several reports from developers

indicating they are experiencing app crashes on certain devices on Android 6.0. If you are

targeting Android 6.0, use the following steps:

https://developer.android.com/studio/build/shrink-code
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/application-element
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/studio/build/#module-level
https://developer.android.com/studio/build/application-id
https://developer.android.com/studio/publish/versioning
https://developer.android.com/studio/publish/versioning
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/guide/app-bundle
https://issuetracker.google.com/issues/147096055

 If you build an App Bundle Edit android/gradle.properties and add the

flag: android.bundle.enableUncompressedNativeLibs=false.

 If you build an APK Make sure android/app/src/AndroidManifest.xml doesn’t

set android:extractNativeLibs=false in the <application> tag.

 For more information, see the public issue.

Build an app bundle
 This section describes how to build a release app bundle. If you completed the

signing steps, the app bundle will be signed. At this point, you might
consider obfuscating your Dart code to make it more difficult to reverse engineer.
Obfuscating your code involves adding a couple flags to your build command, and
maintaining additional files to de-obfuscate stack traces.

 From the command line:
 Enter cd <app dir>

(Replace <app dir> with your application‟s directory.)

 Run flutter build appbundle

(Running flutter build defaults to a release build.)

 The release bundle for your app is created at <app

dir>/build/app/outputs/bundle/release/app.aab.

 By default, the app bundle contains your Dart code and the Flutter runtime
compiled for armeabi-v7a (ARM 32-bit), arm64-v8a (ARM 64-bit), and x86-64 (x86
64-bit).

Test the app bundle
 An app bundle can be tested in multiple ways—this section describes two.

Offline using the bundle tool

 If you haven‟t done so already, download bundletool from the GitHub repository.

 Generate a set of APKs from your app bundle.

 Deploy the APKs to connected devices.

Online using Google Play

 Upload your bundle to Google Play to test it. You can use the internal test track, or the
alpha or beta channels to test the bundle before releasing it in production.

 Follow these steps to upload your bundle to the Play Store.

Build an APK
 Although app bundles are preferred over APKs, there are stores that don‟t yet

support app bundles. In this case, build a release APK for each target ABI
(Application Binary Interface).

 If you completed the signing steps, the APK will be signed. At this point, you might
consider obfuscating your Dart code to make it more difficult to reverse engineer.
Obfuscating your code involves adding a couple flags to your build command.

 From the command line:

https://issuetracker.google.com/issues/147096055
https://flutter.dev/docs/deployment/obfuscate
https://developer.android.com/ndk/guides/abis#v7a
https://developer.android.com/ndk/guides/abis#arm64-v8a
https://developer.android.com/ndk/guides/abis#86-64
https://github.com/google/bundletool/releases/latest
https://developer.android.com/studio/command-line/bundletool#generate_apks
https://developer.android.com/studio/command-line/bundletool#deploy_with_bundletool
https://developer.android.com/studio/publish/upload-bundle
https://flutter.dev/docs/deployment/obfuscate

 Enter cd <app dir>

(Replace <app dir> with your application‟s directory.)

 Run flutter build apk --split-per-abi

(The flutter build command defaults to --release.)

 This command results in three APK files:
 <app dir>/build/app/outputs/apk/release/app-armeabi-v7a-release.apk

 <app dir>/build/app/outputs/apk/release/app-arm64-v8a-release.apk

 <app dir>/build/app/outputs/apk/release/app-x86_64-release.apk

 Removing the --split-per-abi flag results in a fat APK that contains your code
compiled for all the target ABIs. Such APKs are larger in size than their split
counterparts, causing the user to download native binaries that are not applicable
to their device‟s architecture.

Install an APK on a device
 Follow these steps to install the APK on a connected Android device.

 From the command line:
 Connect your Android device to your computer with a USB cable.

 Enter cd <app dir> where <app dir> is your application directory.

 Run flutter install.

Publishing to the Google Play Store
 For detailed instructions on publishing your app to the Google Play Store, see

the Google Play launch documentation.

Updating the app’s version number
 The default version number of the app is 1.0.0. To update it, navigate to

the pubspec.yaml file and update the following line:

 version: 1.0.0+1

 The version number is three numbers separated by dots, such as 1.0.0 in the

example above, followed by an optional build number such as 1 in the example

above, separated by a +.

 Both the version and the build number may be overridden in Flutter‟s build by

specifying --build-name and --build-number, respectively.

 In Android, build-name is used as versionName while build-number used

as versionCode. For more information, see Version your app in the Android
documentation.

 After updating the version number in the pubspec file, run flutter pub get from
the top of the project, or use the Pub get button in your IDE. This updates

the versionName and versionCode in the local.properties file, which are later

updated in the build.gradle file when you rebuild the Flutter app.

For Build iOS Follow this link:

https://developer.android.com/distribute/googleplay/start
https://developer.android.com/studio/publish/versioning
https://flutter.dev/docs/deployment/ios

Build and release an iOS app
 This guide provides a step-by-step walkthrough of releasing a Flutter app to the App

Store and TestFlight.

o Preliminaries

 Before beginning the process of releasing your app, ensure that it meets Apple‟s App
Review Guidelines.

 In order to publish your app to the App Store, you must first enroll in the Apple Developer
Program. You can read more about the various membership options in Apple‟s Choosing
a Membership guide.

Register your app on App Store Connect
 Manage your app‟s life cycle on App Store Connect (formerly iTunes Connect). You

define your app name and description, add screenshots, set pricing, and manage
releases to the App Store and TestFlight.

 Registering your app involves two steps: registering a unique Bundle ID, and creating an
application record on App Store Connect.

 For a detailed overview of App Store Connect, see the App Store Connect guide.

Register a Bundle ID
 Every iOS application is associated with a Bundle ID, a unique identifier registered with

Apple. To register a Bundle ID for your app, follow these steps:

 Open the App IDs page of your developer account.

 Click + to create a new Bundle ID.

 Enter an app name, select Explicit App ID, and enter an ID.

 Select the services your app uses, then click Continue.

 On the next page, confirm the details and click Register to register your Bundle ID.

Create an application record on App Store Connect
 Register your app on App Store Connect:
 Open App Store Connect in your browser.

 On the App Store Connect landing page, click My Apps.

 Click + in the top-left corner of the My Apps page, then select New App.

 Fill in your app details in the form that appears. In the Platforms section, ensure that iOS
is checked. Since Flutter does not currently support tvOS, leave that checkbox
unchecked. Click Create.

 Navigate to the application details for your app and select App Information from the
sidebar.

 In the General Information section, select the Bundle ID you registered in the preceding
step.

 For a detailed overview, see Add an app to your account.

Review Xcode project settings
 This step covers reviewing the most important settings in the Xcode workspace. For

detailed procedures and descriptions, see Prepare for app distribution.

 Navigate to your target’s settings in Xcode:
 In Xcode, open Runner.xcworkspace in your app‟s ios folder.

 To view your app‟s settings, select the Runner project in the Xcode project navigator.
Then, in the main view sidebar, select the Runner target.

 Select the General tab.

 Verify the most important settings.

https://developer.apple.com/app-store/submissions/
https://developer.apple.com/app-store/submissions/
https://developer.apple.com/testflight/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://developer.apple.com/programs/
https://developer.apple.com/programs/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/app-store-connect/
https://developer.apple.com/support/app-store-connect/
https://developer.apple.com/account/ios/identifier/bundle
https://appstoreconnect.apple.com/
https://help.apple.com/app-store-connect/#/dev2cd126805
https://help.apple.com/xcode/mac/current/#/dev91fe7130a

 In the Identity section:

 Display Name

The display name of your app.

 Bundle Identifier

The App ID you registered on App Store Connect.

 In the Signing & Capabilities section:

 Automatically manage signing

Whether Xcode should automatically manage app signing and provisioning. This
is set true by default, which should be sufficient for most apps. For more complex
scenarios, see the Code Signing Guide.

 Team

Select the team associated with your registered Apple Developer account. If
required, select Add Account…, then update this setting.

 In the Build Settings section:

 iOS Deployment Target

The minimum iOS version that your app supports. Flutter supports iOS 8.0 and
later. If your app includes Objective-C or Swift code that makes use of APIs that
were unavailable in iOS 8, update this setting appropriately.

 The General tab of your project settings should resemble the following:

https://developer.apple.com/library/content/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html

 For a detailed overview of app signing, see Create, export, and delete signing certificates.

Updating the app’s deployment version
 If you changed Deployment Target in your Xcode project,

open ios/Flutter/AppframeworkInfo.plist in your Flutter app and update
the MinimumOSVersion value to match.

Updating the app’s version number
 The default version number of the app is 1.0.0. To update it, navigate to

the pubspec.yaml file and update the following line:

 version: 1.0.0+1

 The version number is three numbers separated by dots, such as 1.0.0 in the example
above, followed by an optional build number such as 1 in the example above, separated
by a +.

 Both the version and the build number may be overridden in Flutter‟s build by specifying -
-build-name and --build-number, respectively.

 In iOS, build-name uses CFBundleShortVersionString while build-
number uses CFBundleVersion. Read more about iOS versioning at Core Foundation
Keys on the Apple Developer‟s site.

https://help.apple.com/xcode/mac/current/#/dev154b28f09
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html

Add an app icon
 When opening these apps a placeholder icon set is created. This step covers replacing

these placeholder icons with your app‟s icons:

 Review the iOS App Icon guidelines.

 In the Xcode project navigator, select Assets.xcassets in the Runner folder. Update the
placeholder icons with your own app icons.

 Verify the icon has been replaced by running your app using flutter run.

Create a build archive
 This step covers creating a build archive and uploading your build to App Store Connect.

 During development, you‟ve been building, debugging, and testing with debug builds.
When you‟re ready to ship your app to users on the App Store or TestFlight, you need to
prepare a release build. At this point, you might consider obfuscating your Dart code to
make it more difficult to reverse engineer. Obfuscating your code involves adding a
couple flags to your build command.

 On the command line, follow these steps in your application directory:

 Run flutter build ios to create a release build (flutter build defaults to --release).

 To ensure that Xcode refreshes the release mode configuration, close and re-open your
Xcode workspace. For Xcode 8.3 and later, this step is not required.

 In Xcode, configure the app version and build:
 In Xcode, open Runner.xcworkspace in your app‟s ios folder.

 Select Product > Scheme > Runner.

 Select Product > Destination > Any iOS Device.

 Select Runner in the Xcode project navigator, then select the Runner target in the
settings view sidebar.

 In the Identity section, update the Version to the user-facing version number you wish to
publish.

 In the Identity section, update the Build identifier to a unique build number used to track
this build on App Store Connect. Each upload requires a unique build number.

 Finally, create a build archive and upload it to App Store Connect:

 Select Product > Archive to produce a build archive.

 In the sidebar of the Xcode Organizer window, select your iOS app, then select the build
archive you just produced.

 Click the Validate App button. If any issues are reported, address them and produce
another build. You can reuse the same build ID until you upload an archive.

 After the archive has been successfully validated, click Distribute App. You can follow
the status of your build in the Activities tab of your app‟s details page on App Store
Connect.

 You should receive an email within 30 minutes notifying you that your build has been
validated and is available to release to testers on TestFlight. At this point you can choose
whether to release on TestFlight, or go ahead and release your app to the App Store.

 For more details, see Upload an app to App Store Connect.

Release your app on TestFlight
 TestFlight allows developers to push their apps to internal and external testers. This

optional step covers releasing your build on TestFlight.

 Navigate to the TestFlight tab of your app‟s application details page on App Store
Connect.

 Select Internal Testing in the sidebar.

 Select the build to publish to testers, then click Save.

https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/app-icon/
https://flutter.dev/docs/deployment/obfuscate
https://appstoreconnect.apple.com/
https://appstoreconnect.apple.com/
https://help.apple.com/xcode/mac/current/#/dev442d7f2ca
https://developer.apple.com/testflight/
https://appstoreconnect.apple.com/
https://appstoreconnect.apple.com/

 Add the email addresses of any internal testers. You can add additional internal users in
the Users and Roles page of App Store Connect, available from the dropdown menu at
the top of the page.

 For more details, see Distribute an app using TestFlight.

Release your app to the App Store
 When you‟re ready to release your app to the world, follow these steps to submit your app

for review and release to the App Store:

 Select Pricing and Availability from the sidebar of your app‟s application details page
on App Store Connect and complete the required information.

 Select the status from the sidebar. If this is the first release of this app, its status is 1.0
Prepare for Submission. Complete all required fields.

 Click Submit for Review.

 Apple notifies you when its app review process is complete. Your app is released
according to the instructions you specified in the Version-Release section.

 For more details, see Distribute an app through the App Store.

o If you have done this good so far, You will find the build option on the

top navigation menu.

 Go to the terminal. Run flutter build apk from the terminal. It will build a
release apk.

 Distribution

o Manual Distribution

 If you have built it successfully, you will find the apk file inside:

“build/app/outputs/flutter-apk/app- release.apk”. You can distribute

this application manually by hosting it on your server or somewhere else.

o Google Playstore

 You can host the application on Google Playstore as well. You will

find tons of supporting videos and blogs on the internet like this

https://www.youtube.com/watch?v=dR04ArAhxd4&ab_ch

annel=GoogleDevelopers

 Follow whichever you feel easier.

o App Store iOS

 You can host the application on Apple Store as well. You will find tons

of supporting videos and blogs on the internet like this

https://www.youtube.com/watch?v=MxejThYFDdY&ab_ch

annel=DarranKelinske

 Follow whichever you feel easier.

https://help.apple.com/xcode/mac/current/#/dev2539d985f
https://appstoreconnect.apple.com/
https://help.apple.com/xcode/mac/current/#/dev067853c94
https://www.youtube.com/watch?v=dR04ArAhxd4&ab_channel=GoogleDevelopers
https://www.youtube.com/watch?v=dR04ArAhxd4&ab_channel=GoogleDevelopers
https://www.youtube.com/watch?v=dR04ArAhxd4&ab_channel=GoogleDevelopers
https://www.youtube.com/watch?v=dR04ArAhxd4&ab_channel=GoogleDevelopers
https://www.youtube.com/watch?v=MxejThYFDdY&ab_channel=DarranKelinske
https://www.youtube.com/watch?v=MxejThYFDdY&ab_channel=DarranKelinske
https://www.youtube.com/watch?v=MxejThYFDdY&ab_channel=DarranKelinske
https://www.youtube.com/watch?v=MxejThYFDdY&ab_channel=DarranKelinske

 Source code Structure
o Here is the source code structure of the Manyvendor eCommerce customer

Mobile Application.

All the screens we‟ve used is in the screens folder. All the providers are inside the

provider's folder. All the widgets we‟ve

used are inside provider folder are holding all provider classes, repository folder contain database operations,

the screen folder contains all screens, service folder contains all service classes. widgets folder contains all

custom widgets, a model folder contain all the data models we‟ve used here. main.dart file contains all the

Splash Screen UI. Android and ios folders contain android and ios related files respectfully. You can open the

contents of the ios folder from xCode to change app icons and splash screens. Related android content in the

Android folder.

