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ABSTRACT  

 

In this paper, we develop an alternative navigation system for Unmanned Aerial Vehicle (UAV) in Global Positioning Systems 

(GPS)-denied environment. We use two image inputs, one is acquired with an on-board camera placed on the UAV (which is 

the large-area image) and the other is from satellite images (which is small known image) with GPS information. We use a 

convolutional neural network (CNN) architecture based on Oxford’s Visual Geometry Group network (VGG-16) and utilize 

normalized variant mutual information between these two images to obtain position of the UAV. Satellite images are labelled 
and given to the UAV. When GPS information is lost, our algorithm starts to function and images from UAV camera are 

searched whether satellite image is seen by cameras on UAV image or not. If the UAV is in that area, our algorithm finds the 

GPS information from satellite image data. 

 

INTRODUCTION  

 

Inertial Navigation Systems (INS) and GPS provide latitude, longitude, altitude and velocity information of UAV. In GPS-

denied environments we have to rely on information from INS only. However, INS alone cannot be used since it is affected 

by the drift of UAV, and accumulating errors from the sensors producing unusable information. GPS vulnerability is an 

important problem that needs to be solved for UAVs [1]. To remedy this problem and maintain a safe flight in the GPS-

denied environments, there are alternative approaches such as geo-referenced navigation and vision-based navigation to 
correct errors stemming from INS. 
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Terrain navigation methods focus on terrain model and aircraft knows its position by using terrain model and radar altimeter 

sensors. These methods with terrain models are especially employed in very high speed aircrafts such as jet fighters. It cannot 

be used for low speed aircrafts, since altitude alteration is not suitable for precise ground matching [2]. There is also another 

alternative navigation system which utilizes cross correlation between two image sets. Both cross correlation and mutual 

information have positive and negative sides for different use cases [3]. Cross correlation is a measure for similarity of two 

images, however, it is affected by intensity. For example, when UAV flies on the same area in different season, cross 
correlation cannot detect the area because of the intensity value. 

 

This paper proposes a novel navigation method based on registration with mutual information and deep learning. Our method 

uses two types of images sets: one image set is acquired with an on-board camera placed on the UAV and the other image set 

comes from satellite images with the exact GPS information. When there is jamming or loss in GPS information producing a 

GPS-denied environment, the images on the satellite image dataset are searched in the images acquired by the on-board 

camera within a certain neighborhood of the last tracked position of the UAV. 

 

We obtain one image set from on-board camera of UAV in [4], the images are acquired in Cedaredge, Colorado. The second 

dataset is from Google Maps [5], we find Cedaredge, Colorado and save the places which are shown in drone dataset as 

satellite images. We also label the dataset whether the view of small image which is satellite image is shown in drone data 

images or not. When we label the images, we know the correct information whether the satellite image is viewed in drone 
dataset before the proposed solution. 

 

We perform feature extraction for two image sets using a convolutional neural network architecture based on Oxford’s VGG 

network (VGG-16), which is trained on the 1000-labels ImageNet dataset [6]. These features first enter the binary classifier 

feed-forward neural network and the algorithm decides whether the target image exists in the main image acquired by UAV. 

If the output is positive, i.e., the probability of presence is greater than a certain threshold, another neural network predict the 

location of the target image in the main image by estimating four parameters of the boundary, which are (𝑥𝑐 , 𝑦𝑐 , ℎ, 𝑤). These 

parameters represent the center point in 𝑥- and 𝑦- directions, height and width, respectively. In addition, we find mutual 

information between these two images for varying rotation angles and predict the location of the target image based on 

mutual information. 
 

We approach the problem as a regression. To train the model, we use backpropagation algorithm where the loss is Euclidean 

loss. When the images are matched, the GPS information for the UAV is directly obtained from corresponding image in the 

satellite dataset. We emphasize that our architecture does not only contain an end-to-end convolutional neural network, but 

also uses intermediate features from mutual information. Our method is highly adaptive due to inherent characteristics of 

neural networks. In addition, our method is robust to varying environmental conditions, since the mutual information uses 

joint density of two images unlike many other template matching navigation solutions using intensity values. 

 

PROBLEM DESCRIPTION 

 

In this paper, we develop an alternative navigation system for UAVs. There is an on-board camera of UAV and it acquires 
pictures of UAV’s route. When the aircraft arrives in a non-GPS area and generates a GPS invalid alert, our algorithm starts 

to function. Flight path of the UAV is assumed to be known in advance and satellite images of the flight path are given in 

advance on the UAV as a small satellite image dataset. 

 

In this work, first problem is to know whether the image from UAV camera exists in the satellite image set or not. In order to 

solve this problem, a multilayer neural network with a binary output is used. We train the system before UAV flies on this 

area. We take sample video from UAV on this area and we take satellite images from these area with known GPS 

information. After we train the system, whenever UAV flies on the area and GPS invalid alert is taken, this algorithm starts 

and decides whether the satellite image with exact GPS information is in the image from the camera on UAV. In this 

framework, we provide only the GPS information belonging to the satellite images, i.e., without altitude information. 

 

Second problem is scaling. When the algorithm decides the image from satellite dataset is present in the image from the 
camera of UAV, satellite image is searched in image from UAV. The size of the object in satellite image is different from 

object size from image of on-board camera. To solve this problem, we first train a neural network, whose inputs are the 

features of two images extracted by the VGG-16 network and predict coordinate of objects from the satellite image in the 

image from camera with a multilayer feed-forward neural network. However, neural networks mainly are vulnerable to small 
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changes, which human eyes cannot even notice [7]. For example, addition of a small Gaussian noise may cause a neural 

network classifier to misclassify with a high confidence. Therefore, we do not directly use these predictions for the 

coordinates. Instead, we predict the size of the target image on the image acquired by the camera of UAV, we then resize the 

satellite image size with image object size from camera, then apply the normalized variant mutual information between 

resized satellite image and on-board camera image to make our system more robust. To provide the boundaries predicted by 

the neural network as a prior information to the mutual information block, we multiply the mutual information values 

corresponding the predicted boundaries with a small coefficient 𝑐 > 1, e.g., 𝑐 = 1.2. Note that setting 𝑐 = 1 means no 

information is passed to the mutual information from the neural network other than size of the object. Furthermore, setting 𝑐 

to a large value may cause output of mutual information block to converge to the output of neural network directly, which is 

an undesired case. For this purpose, we set 𝑐 to a value slightly greater than 1 as stated above. 

 
Figure 1: Diagram of proposed navigation system algorithm 

 

NAVIGATION SYSTEM BASED ON NEURAL NETWORK 

 

We use a convolutional neural network architecture based on Oxford’s VGG network (VGG-16), trained on the 1000-labels 
ImageNet dataset. The VGG-16 network provides feature extraction of an image as shown in the following figure: 

 
Figure 2: Architecture of VGG-16 [8] 

 

Input of first convolution layer is a fixed 224x224x3 size RGB image. After convolution layers with ReLu activation function 

and max pooling, we obtain a feature map whose size is 7x7x512. VGG-16 architecture continues with fully connected 

network and ReLu activation function in order to classify the images in terms of type [6]. However, in our system, we do not 
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continue to use the fully connected network which is used in VGG-16, we design different fully connected layers to detect 

the existence of the image and predict the boundaries of the target image. 

 

Because of the fact that VGG-16 network only takes 224x224 size images, we fix size of images before giving them in the 

CNN, i.e., resize images to 224x224.  We give a satellite image and an image from camera to VGG-16 network and take 

25088 features for each image. 
 

In order to decide whether the satellite image exists in the image from UAV camera, these features enter the final feed-

forward neural networks. We use two layer feed-forward neural networks for existence of image. As an activation function of 

the first neural network, we use ReLu and as a second neural network activation function, we use sigmoid function. 

Mathematically, ReLu function is defined as 𝑦 = max (0, 𝑥) and sigmoid function is defined as 𝑦 =
1

1+𝑒−𝑥. Because sigmoid 

function fixes the value in [0-1], we take the value between 0 and 1 while using this neural network, which presents the 

probability an image exists in the other image. We decide whether the satellite image is shown in image on UAV by the 

output of sigmoid function. To train this classifier network, we use backpropogation algorithm with cross entropy loss. 

 

The second network for navigation system is to predict four parameters, which are (𝑥𝑐 , 𝑦𝑐 , ℎ, 𝑤,). These parameters represent 

the center point in 𝑥- and 𝑦- directions, height and width, respectively. We use three final feed-forward neural networks and 

as an activation function, we only use ReLu. To train this network, we use backpropogation algorithm with mean squared 
error loss. In both cases, Adam [9] is used as the optimizer with learning rate 0.001. 

 

NAVIGATION SYSTEM BASED ON IMAGE REGISTRATION WITH MUTUAL INFORMATION 

 

Mutual information is computed by using entropy of the signals. Entropy measures the disorder of the system, if the entropy 

is high, the disorder of the system is also increased. Shannon entropy is widely used in image registration studies [10], [11] 

and [12]. We denote Shannon entropy by 𝐻(𝑋) of random variable X and it is defined as: 

𝐻(𝑋) = − ∑ 𝑝𝑖  𝑙𝑜𝑔(𝑝𝑖)

𝑛

𝑖=1

 

where 𝑝𝑖 is the probability of  the ith event. Entropy of the variable means the amount of information which is included in the 

variable.  𝑃𝑋𝑌(𝑥, 𝑦) is joint probability distribution of X and Y,  𝑃𝑋 (𝑥) is the probability distribution of  X and 𝑃𝑌(𝑦) is the 

probability distribution of Y. The relation between 𝑃𝑋𝑌(𝑥, 𝑦), 𝑃𝑋(𝑥), 𝑃𝑌(𝑦) are given in following equation: 

𝑃𝑋 (𝑥) = ∑ 𝑃𝑋𝑌 (𝑥, 𝑦)

𝑦

 

𝑃𝑌 (𝑦) = ∑ 𝑃𝑋𝑌(𝑥, 𝑦)

𝑥

 

In order to find the similarity of two discrete variables X and Y, mutual information (MI) is computed, MI equation is given 
by the following equations [10], [11], [12]. 

𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) 

𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋| 𝑌) 

𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑌) − 𝐻(𝑌| 𝑋) 

Where 𝐻(𝑋) and 𝐻(𝑌) are marginal entropies, 𝐻(𝑋| 𝑌) and 𝐻(𝑌|𝑋) are conditional entropies and 𝐻(𝑋, 𝑌) is joint entropy. 

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝𝑖𝑗  log (𝑝𝑖𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

𝐻(𝑋| 𝑌) = − ∑ ∑ 𝑝𝑖𝑗  log (𝑝𝑖|𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

𝐻(𝑌| 𝑋) = − ∑ ∑ 𝑝𝑖𝑗  log (𝑝𝑗|𝑖)

𝑚

𝑗=1

𝑛

𝑖=1

 

𝐻(𝑌) − 𝐻(𝑌| 𝑋) = − ∑ 𝑝𝑗  𝑙𝑜𝑔(𝑝𝑗)

𝑚

𝐽=1

+ ∑ ∑ 𝑝𝑖𝑗 log(𝑝𝑗|𝑖)

𝑚

𝑗=1

𝑛

𝑖=1

= ∑ ∑ 𝑝𝑖𝑗 log(𝑝𝑗|𝑖)

𝑚

𝑗=1

𝑛

𝑖=1

− ∑ ∑ 𝑝𝑖𝑗 log(𝑝𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

 

With Bayes theorem (𝑝𝑖𝑗 = 𝑝𝑖  𝑝𝑗|𝑖 = 𝑝𝑗  𝑝𝑖|𝑗 ), MI is calculated as the following equation [10]: 
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𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋| 𝑌) = 𝐻(𝑌) − 𝐻(𝑌| 𝑋) = ∑ ∑ 𝑝𝑖𝑗  log 
𝑝𝑖𝑗

𝑝𝑖  𝑝𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 

Mutual information can take value 0 to infinity. When similarity is increased, the mutual information value also increases. In 
order to handle with larger mutual information values, it is needed to bound values, therefore, we use normalized variant on 

mutual information [13] 

𝑁𝑉𝑀𝐼(𝑋, 𝑌) =
𝑀𝐼(𝑋, 𝑌)

𝐻(𝑋) +  𝐻(𝑌)
 

We calculate normalized variant mutual information (NVMI) by shifting the resized satellite image on the image from on-

board camera for different rotation angle (0, 90, 180, 270 degree) and we save each NVMI value in matrix with row, column 

and angle information. We choose the maximum NVMI information in NVMI matrix, and draw the expected image on the 

drone dataset image. 

 

SIMULATIONS 

 
In this section, we illustrate the performance of proposed navigation system in GPS-denied environment. As the UAV images 

we use the dronemapper data images [4] and for the target images with pre-known coordinates we use images from Google 

maps [5] at the same location. We work on a small datasets with 82 images in total. There are 90 annotated objects in these 

images, where the number of unique labels is 11. We split the annotated objects as %90 (81) and %10 (9) as the training and 

test sets, respectively. We repeat our experiments with 3 different random splits. To mitigate the small data problem, we use 

data augmentation. Here, we expand the training set by including the rotated version of training images, where the rotation 

angles are 𝜃 = [0, 90, 180, 270]. An object in the image is counted as “found” if the Intersection of Union (IoU) score 

between the prediction the ground truth is greater than a certain threshold 𝛼 = 0.20.  

 

Based on this setup, the accuracy of the algorithm on the test sets is %𝟖𝟖. 𝟖𝟗. The mean IoU score of the dataset is 𝟎. 𝟕𝟎𝟐. 

 

In Figure 3, there is a satellite view with GPS information and we label the target places in the satellite images. 

 
Figure 3: Satellite view from Google Maps [5]. 
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In Figure 4 and Figure 5, images are from on-board camera of UAV and red marked borders show the places which are from 

satellite images and have known GPS information in advance. Our algorithm finds these satellite images in the image from 

camera on UAV and matches the GPS information. Even though the images from on-board camera is taken at different 

angles 0, 90, 180, 270, the satellite image can be matched on the image from UAV. Figure 4 is for matching for satellite 

target 1 and Figure 5 is marked for satellite target 7. 

 
Figure 4: Finding view of satellite image target 1 in the DJI 0001 image which is from on-board camera of UAV in four 

rotation angle. 

 
Figure 5: Finding view of satellite image target 7 in the DJI 0012 image which is from on-board camera of UAV in four 

rotation angle. 
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In the figures, right image is viewed in satellite view from Google Map shown in Figure 3 and left image is from the camera 

of UAV. When UAV is flying on the known route, the satellite image view is matched with the image view from camera. 

Because GPS information from places shown in satellite image is known in advance, GPS information is known even in 

GPS-denied environment.  

 
Figure 6: Left image (target 4 is boarded) which is from on-board camera and right image (target 4) which is from Google 

map shown in Figure 3. 

 
Figure 7: Left image (target 7 is boarded) which is from on-board camera and right image (target 7) which is from Google 

map shown in Figure 3. 
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CONCLUSION 

In this paper, we studied image registration based on deep neural networks and the mutual information on a small dataset. We 

used pre-trained VGG-16 network for feature extraction. Next, we trained a classifier and a predictor networks using these 

features, where the classifier network provides binary decisions about if a target image exists in the given image and the 

predictor network gives the candidate boundaries of the target object. The target image is resized based on these boundaries. 

Next, we created a mutual information map by shifting the resized target image on the UAV image and then locate the target 
where the mutual information is maximum. We demonstrate the performance of the proposed algorithm in the simulations. 
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