

Done CI9-EE-13 Hydroinformatics -...

Reassessment coursework (Hydroinformatics CI9-EE-13)

Please solve ALL the following questions.

Organize all your files in a readable manner, compress them and submit as a single (.zip) file.

Marking criteria: Code correctness, Code efficiency, Code Readability

Expected Time to complete: 10 hours

Problem 1 (40 Marks) - Expected Time to Complete (4 hours)

Relevant course material: Matrix/vector operations, looping structures, functions

One of the most important systems of partial differential equations (PDEs) in physics, chemistry and biology corresponds to the following reaction diffusion system

$$\frac{du}{dt} = r_u \nabla^2 u - u v^2 + f(1-u)$$

$$\frac{dv}{dt} = r_v \nabla^2 v + u v^2 - (f + k)v$$

This system of PDEs describes the time evolution of the concentration of 2 substances (u, v) in space and can be solved on a regular square grid with $\delta x = \delta y = h$ using the following discretization

$$u_{i,j}^{(n)} = u_{i,j}^{(n-1)} + \delta t \left[\frac{u_{i-1,j}^{(n-1)} + u_{i+1,j}^{(n-1)} + u_{i,j-1}^{(n-1)} + u_{i,j+1}^{(n-1)} - 4u_{i,j}^{(n-1)}}{h^2} - u_{i,j}^{(n-1)} \left(v_{i,j}^{(n-1)} \right)^2 + f \left(1 - u_{i,j}^{(n-1)} \right) \right]$$

and

$$v_{i,j}^{(n)} = v_{i,j}^{(n-1)} + \delta t \left[\frac{v_{i-1,j}^{(n-1)} + v_{i+1,j}^{(n-1)} + v_{i,j-1}^{(n-1)} + v_{i,j+1}^{(n-1)} - 4v_{i,j}^{(n-1)}}{h^2} + u_{i,j}^{(n-1)} \left(v_{i,j}^{(n-1)} \right)^2 + (f+k)v_{i,j}^{(n-1)} \right] \right]$$

(n) is the n-th time step of the algorithm that evolves with time increments δt , and (i,j) are the spatial indices of the i-th and j-th element on the regular grid.

Develop the Matlab code to solve this system of coupled PDEs using the above discretization for the regular grid

$$x=[0,1,2\ldots,200]$$

$$y = [0,1,2,\dots 200]$$

An initial condition

$$u = 1$$
 for all x, y

$$v = \begin{cases} 1 \text{ for } 30 < x < 40 \text{ and } 50 < y \leq 60 \\ 1 \text{ for } 40 < x < 50 \text{ and } 60 < y \leq 70 \\ 0, \text{elsewhere} \end{cases}$$

1

For $t \in [0 \ 1000]$

Investigate the cases

a)
$$f = 0.055$$
; $k = 0.062$; $r_u = 1$; $r_v = 0.5$

b)
$$f = 0.018$$
; $k = 0.051$; $r_u = 1$; $r_v = 0.5$

Done CI9-EE-13 Hydroinformatics -...

tne regular grid

.2001

u = 1 for all x, y

$$v = \begin{cases} 1 \text{ for } 30 < x < 40 \text{ and } 50 < y \le 60 \\ 1 \text{ for } 40 < x < 50 \text{ and } 60 < y \le 70 \\ 0, \text{elsewhere} \end{cases}$$

For $t \in [0 \ 1000]$

Investigate the cases

a)
$$f = 0.055$$
; $k = 0.062$; $r_u = 1$; $r_v = 0.5$

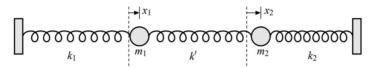
b)
$$f = 0.018$$
; $k = 0.051$; $r_u = 1$; $r_v = 0.5$

all cases use periodic boundary conditions (https://en.wikipedia.org/wiki/Periodic boundary conditions). By trial and error choose appropriate δt values to avoid numerical instabilities.

Minimize as possible the use of looping structures for computational efficiency.

Problem 2 (40 Marks) - Expected Time to Complete (4 hours)

Relevant course material: Matrix/vector operations, ODEs, functions



The kinematics of the system of 2 masses and 3 springs shown in the Figure above are described by the following system of second order ordinary differential equations

$$\begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = - \begin{pmatrix} k_1 + k' & -k' \\ -k' & k_2 + k' \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

where \ddot{x}_1, \ddot{x}_2 are the accelerations (i.e. $2^{\rm nd}$ time derivatives) of the masses m_1, m_2 respectively, k_1, k', k_2 are the spring constants and x_1, x_2 the displacement of the masses from their equilibrium point. Develop the Matlab code that will solve numerically this system using Matlab's built in functionalities (i.e. ode45). Your program should be a function that accepts as arguments the masses (m_1, m_2) , the spring constants (k_1, k_2, k') , the initial displacements and velocities $(x_1(t=0),x_2(t=0),\dot{x}_1(t=0),\dot{x}_2(t=0))$ and the time of integration T. The outputs of the function will be a [2×N] matrix containing the displacements of the masses and a [1×N] vector containing the respective time for the displacements.

Problem 3 (20 Marks) - Expected Time to Complete (2 hours)

Relevant course material: functions, minimization

Develop the Matlab code to perform both constraint and non-constraint minimization of the following functions:

a)
$$f(x,y) = (x+2y-7)^2 + (2x+y-5)^2, x \in [-10,10], y \in [-10,10]$$

b)
$$f(x,y) = 100\sqrt{|y-0.01x^2|} + 0.01|x + 10|, x \in [-15,-5], y \in [-3,3]$$

c) $f(x,y) = 0.26(x^2 + y^2) - 0.48xy, x \in [-10,10], y \in [-10 \ 10]$
d) $f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2, x \in [-5,5], y \in [-5 \ 5]$

c)
$$f(x,y) = 0.26(x^2 + y^2) - 0.48xy, x \in [-10,10], y \in [-10,10]$$

d)
$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2, x \in [-5,5], y \in [-5,5]$$

The function limits apply only for the constrained minimization

